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Abstract

Identifying relationships among stochastic processes is a key goal in disciplines that deal with
complex temporal systems, such as economics. While the standard toolkit for multivariate time
series analysis has many advantages, it can be difficult to capture nonlinear dynamics using linear
vector autoregressive models. This difficulty has motivated the development of methods for vari-
able selection, causal discovery, and graphical modeling for nonlinear time series, which routinely
employ nonparametric tests for conditional independence. In this paper, we introduce the first
framework for conditional independence testing that works with a single realization of a nonsta-
tionary nonlinear process. The key technical ingredients are time-varying regression estimation,
time-varying covariance estimation, and a distribution-uniform strong Gaussian approximation.
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1 Introduction

A great deal of work has been dedicated to developing tests for conditional independence. That is,
testing whether two random vectors X and Y are independent given a third random vector Z. For
example, there are conditional independence tests based on conditional densities [SW08], characteris-
tic functions [SW07], empirical likelihood ratios [SW14], discretization [Mar05; Hua10], permutation
[Dor+14; Sen+17], kernels [Fuk+07; Zha+11; SP11], copulas [BRT12], and conditional mutual infor-
mation [Run18b]. Also, there are many conditional independence tests based on regressing X on Z
and Y on Z followed by testing for independence between the residuals [Pat+09; Pet+14; Ram14;
FFX20; ZZG17; Zha+19].

Unfortunately, conditional independence tests oftentimes struggle to control the Type-I error in
finite samples, as shown by Shah and Peters [SP20]. In fact, Shah and Peters [SP20] prove that
conditional independence testing is fundamentally impossible without making further assumptions.
This issue has sparked significant interest in conditional independence testing over the last several
years. We begin by providing an overview of recent advances in conditional independence testing.
Afterwards, we discuss how our work addresses limitations in the existing literature. Finally, we
motivate our work by reviewing key applications of conditional independence tests for time series in
areas such as variable selection and causal discovery.

The hardness of conditional independence testing. The no-free-lunch result from Shah and
Peters [SP20] states that if one wants to have a conditional independence test with Type-I error con-
trol for all absolutely continuous (with respect to the Lebesgue measure) triplets of random vectors
(X,Y, Z), then this conditional independence test cannot have power against any alternative hypothe-
sis. To make the conditional independence testing problem feasible, we must consider a smaller subset
of the null hypothesis and use domain knowledge to select an appropriate conditional independence
test. This hardness result was revisited by Neykov et al. [NBW21] and Kim et al. [Kim+22], and was
extended to the time series setting by Bodik and Pasche [BP24].

Shah and Peters [SP20] proposed a conditional independence test based on the generalized covari-
ance measure (GCM), which is a suitably normalized sum of the products of the residuals from the
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regressions of X on Z and Y on Z. In this case, the practitioner’s domain knowledge is used to select
appropriate regression methods for the problem at hand. In contrast with the previously mentioned
tests, Shah and Peters [SP20] show that the GCM test has asymptotic Type-I error control, uniformly
over a large collection of distributions for which the null hypothesis of conditional independence holds.

Since then, numerous tests have been developed which draw inspiration from the original GCM
test [SHB22; LSP22; CPH22; WR23; KKR24; CZK24; Lun+24]. Our conditional independence test
can be considered a GCM-type test for the nonstationary nonlinear time series setting. As we will
discuss, moving to this complex setting introduces several challenges and requires completely different
theoretical tools than the original GCM test.

Limitations of the existing literature. Most of the previously discussed conditional independence
tests lack Type-I error control guarantees outside the iid setting. Furthermore, the literature on
conditional independence testing when given only a single realization of a nonstationary process remains
strikingly limited. To the best of our knowledge, only two tests have been proposed for this setting.

First, Malinsky and Spirtes [MS19] introduce a conditional independence test for nonstationary
linear vector autoregressions with iid Gaussian errors. Specifically, they study processes that exhibit
“stochastic trends” so that the first difference of the process is stable. In contrast, our conditional
independence test allows for nonlinear processes with very general forms of nonstationarity and time-
varying regression functions with non-iid and non-Gaussian errors. Moreover, we demonstrate that
our conditional independence test possesses uniformly asymptotic Type-I error control, as established
for the GCM test from Shah and Peters [SP20].

Second, Flaxman et al. [FNS15] develop a conditional independence testing framework for non-iid
data based on Gaussian process regression. The main idea is to pre-whiten the non-iid data using
Gaussian process regression to control for dependencies (e.g. spatial, temporal, or network), which
should yield iid residuals. The next step is to test for independence between these residuals using the
Hilbert-Schmidt Independence Criterion (HSIC) [Gre+07]. The authors state that their framework
could be used with nonstationary covariance functions, although this idea was not developed.

We also mention some conditional independence tests designed for the setting in which multiple
realizations of a stochastic process are available. Manten et al. [Man+24] develop a conditional inde-
pendence test for stochastic processes using the signature kernel. Christgau et al. [CPH22] introduced
a framework for testing so-called “conditional local independence” relationships among point pro-
cesses. Lundborg et al. [LSP22] introduce a conditional independence test for function-valued random
variables. Also, we note that there is a growing literature on independence testing for nonstationary
processes. Liu et al. [Liu+23] develop independence tests based on the HSIC [Gre+07]. These tests
require multiple realizations of the nonstationary process, whereas the independence tests for locally
stationary processes from [Bee21; Bru22] only require one realization.

Variable selection for forecasting. A central problem in statistics and machine learning is vari-
able selection. Conditional independence tests can be used for variable selection when paired with
multiple testing procedures to control the false discovery rate (FDR) [BH95; BY01]. In the context of
forecasting, the goal is to identify a minimal subset S ⊆ {1, ..., p} out of p signals (including relevant
lags) such that, for all times t, the forecasting target Yt+h at horizon h is conditionally independent of
the other signals (Xi

t)i ̸∈S given (Xi
t)i∈S . See Pearl [Pea14] and Candés et al. [Can+18] for more dis-

cussion of variable selection. We contribute to this literature by providing a conditional independence
test flexible enough to be used for identifying relevant forecasting signals in unstable environments.

Causal discovery for time series. The discovery of time-lagged causal relationships (see Figure 1)
from observational time series is an important problem in numerous scientific domains [Run+19a]. Con-
ditional independence tests for time series are a core component of constraint-based and hybrid causal
discovery algorithms designed for temporally correlated data. For example, Runge et al. [Run+19b]
used the conditional mutual information-based conditional independence test from Runge [Run18b]
in a causal discovery algorithm for time series called PCMCI, which builds on the foundational PC
algorithm from Spirtes et al. [SGS01]. We discuss a different framework for assessing relationships
between stochastic processes called Granger causality in Section C.2.

Over the last several years, causal discovery for nonstationary time series has become an increas-
ingly active area of research [MS19; Hua+20; FHG23; Don+23; SGF24]. We emphasize that the
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conditional independence test used in the causal discovery algorithm must be appropriately tailored
to the characteristics of the data. For instance, if the underlying conditional independence test fails
to account for nonstationarity, then the causal discovery algorithm may produce incorrect conclusions
about the causal structure of the process. Our work fills a gap in the literature on causal discovery for
nonstationary time series by providing a practical conditional independence test for this setting.

Xt−1 Xt Xt+1

Zt−1 Zt Zt+1

Yt−1 Yt Yt+1

Figure 1: Causal graph depicting the time-lagged causal relationships among the stochastic processes
X = (Xt)t∈Z, Y = (Yt)t∈Z, and Z = (Zt)t∈Z. The causal graph shows that Z is a common cause of
both X and Y , directly influencing X in the same time period and affecting Y with a one time step
delay. In this example, the causal graphical structure of the multivariate process (X,Y, Z) remains
fixed over time, though the causal effects themselves may vary over time.

1.1 Our contributions

We summarize the key contributions of the paper here.

• We propose a conditional independence test which can be used with a single realization of a
high-dimensional nonstationary nonlinear process. In Theorem 3.1, we show that our test has
asymptotic Type-I error control, uniformly over a large family of distributions for which the null
hypothesis of conditional independence holds.

• Our test statistics are based on the sample covariance between the residuals from black-box time-
varying regressions of X on Z and Y on Z. In contrast with other regression-based conditional
independence tests which require iid errors, we allow the errors to be nonstationary nonlinear
processes that satisfy a certain martingale difference sequence condition.

• We state a distribution-uniform version of the strong Gaussian approximation for high-dimensional
nonstationary nonlinear time series from Mies and Steland [MS23]. We use this result with the
products of the aforementioned error processes to justify our bootstrap procedure in Algorithm 1.

• In Theorem 4.1, we provide a guarantee for an instantiation of our test based on the sieve
time-varying nonlinear regression estimator from Ding and Zhou [DZ21]. This test complements
the work by the same authors on autoregressive approximations and the partial autocorrelation
function for locally stationary time series, both of which use the method of sieves [DZ23; DZ25].

• In our simulations, we demonstrate the satisfactory performance of our test when using this sieve
estimator. Also, we find that other regression-based conditional independence tests are extremely
sensitive to even mild forms of nonstationarity and temporal dependence.

• In Section 5.1, we introduce a novel cross-validation procedure based on subsampling for non-
parametric estimators of time-varying regression functions of nonstationary nonlinear processes.
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1.2 Paper outline

The rest of the paper is structured as follows. In Section 2, we discuss the main ideas and imple-
mentation of our proposed test. In Section 3, we introduce the theoretical framework and state the
theoretical guarantee for our test. In Section 4, we consider an instantiation of our test based on the
sieve estimator from Ding and Zhou [DZ21]. In Section 5, we demonstrate the satisfactory perfor-
mance of our test using this sieve estimator by conducting comprehensive simulations. In Section B,
we state a distribution-uniform strong Gaussian approximation for nonstationary nonlinear processes.
In Section A, we prove the main results. We present extensions and additional discussions in Section C.

2 The Dynamic Generalized Covariance Measure (dGCM)

In this section, we give a high-level overview of our work. Specifically, we introduce the notation, main
ideas, and implementation of our proposed dynamic generalized covariance measure (dGCM) test. For
expository purposes, we delay the technical details of our theoretical framework until Section 3.

2.1 Setting and notation

We work in a triangular array framework for high-dimensional nonstationary nonlinear time series.
Let (Xt,n, Yt,n, Zt,n)t∈[n] be the observed sequence of length n ∈ N, where [n] = {1, . . . , n}. We use
the notation Xn = (Xt,n)t∈[n], Yn = (Yt,n)t∈[n], Zn = (Zt,n)t∈[n] to refer to each observed sequence of
length n, and we use the notation X, Y , Z to refer to each process with any length. Let dX = dX,n,
dY = dY,n, dZ = dZ,n denote the dimensions, which can grow with n. Denote dimension i ∈ [dX ] of
Xt,n by Xt,n,i, dimension j ∈ [dY ] of Yt,n by Yt,n,j , and dimension k ∈ [dZ ] of Zt,n by Zt,n,k.

Next, we introduce notation for the time-offsets of each dimension of Xt,n, Yt,n, Zt,n because
we want to infer time-lagged conditional dependencies. Negative time-offsets are called lags of the
process, and positive time-offsets are called leads of the process. Time-offsets of zero are allowed so
that contemporaneous conditional dependencies can be considered. Let

Ai ⊂ {−n+ 1, . . . , n− 1}, Bj ⊂ {−n+ 1, . . . , n− 1}, Ck ⊂ {−n+ 1, . . . , 0},

be the sets of time-offsets of Xt,n,i, Yt,n,j , Zt,n,k under consideration. We require the time-offsets Ck

to be non-positive so that the conditioning variables are known at time t. In practice, the largest (in
magnitude) time-offsets should be selected small enough so that there is a sufficient amount of data
to conduct the test.

Denote the time-offset a ∈ Ai of Xt,n,i by Xt,n,i,a = Xt+a,n,i, the time-offset b ∈ Bj of Yt,n,j

by Yt,n,j,b = Yt+b,n,j , and the time-offset c ∈ Ck of Zt,n,k by Zt,n,k,c = Zt+c,n,k. Denote the sets

of all time-offsets by A =
⋃dX

i=1 Ai, B =
⋃dY

j=1 Bj , C =
⋃dZ

k=1 Ck, and largest (signed) time-offsets
by amax = max(A), bmax = max(B), cmax = max(C), and the smallest (signed) time-offsets by
amin = min(A), bmin = min(B), cmin = min(C).

Since we are interested in time-lagged conditional independence relationships, it is often useful to
refer to the subset of original times,

Tn = {1−min(amin, bmin, cmin), n−max(amax, bmax, cmax)} ⊆ {1, . . . , n},

in which all time-offsets of each dimension of Xt,n, Yt,n, Zt,n are actually observed. Going forward,
we will write t ∈ Tn instead of t ∈ [n] because we are only using the subset of times in which all
time-offsets are observed. Denote the first time of Tn by T−

n = min(Tn), the last time of Tn by
T+
n = max(Tn), and the cardinality of Tn by Tn = |Tn|. Note that if no negative time-offsets (i.e.

lags) are used then min(amin, bmin, cmin) = 0, and if no positive time-offsets (i.e. leads) are used then
max(amax, bmax, cmax) = 0. Hence, if only time-offsets of zero are used, then Tn = [n].

For all t ∈ Tn, denote the vectors with all dimensions and time-offsets of interest by

Xt,n = (Xt,n,i,a)i∈[dX ],a∈Ai
, Yt,n = (Yt,n,j,b)j∈[dY ],b∈Bj

, Zt,n = (Zt,n,k,c)k∈[dZ ],c∈Ck
.

Denote the dimensions of Xt,n, Yt,n, Zt,n by dX =
∑dX

i=1 |Ai|, dY =
∑dY

j=1 |Bj |, dZ =
∑dZ

k=1 |Ck|,
respectively. Also, denote the entire processes by

Xn = (Xt,n)t∈Tn
, Yn = (Yt,n)t∈Tn

, Zn = (Zt,n)t∈Tn
.
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We allow the number of time-offsets to grow with n, that is, Ai = Ai,n, Bj = Bj,n, Ck = Ck,n

and A = An, B = Bn, C = Cn. However, we require that the largest (in magnitude) time-offset
grows at a slower rate than n such that as n −→ ∞ we have min(amin, bmin, cmin)/n −→ 0 and
max(amax, bmax, cmax)/n −→ 0 so that the number of observed times Tn −→ ∞ arbitrarily slowly.

Since we allow both the number of time-offsets and the number of dimensions to grow with n, we
introduce the index set

Dn ⊆ {(i, j, a, b) : i ∈ [dX ], j ∈ [dY ], a ∈ Ai, b ∈ Bj},

which contains all of the indices for the dimensions and time-offsets of interest. Note that Dn is
specified by the user, and need not contain all possible combinations. Going forward, we will often
refer to the dimension/time-offset tuple by m = (i, j, a, b) ∈ Dn to lighten the notation. The index
set Dn depends on the sample size n through the dimensions and the time-offsets, so its cardinality
Dn = |Dn| may grow with n. Note that Dn reflects the intrinsic dimensionality of the problem and

will appear frequently in the rest of the paper. In the “best case” scenario, we allow Dn = O(T
1
6
n ).

See (20) and the rest of Section B.1 for the full details about how quickly Dn can grow.
For each n ∈ N, let Pn be a collection of distributions for the processes, which we allow to change

with n. For expository purposes, we delay the technical details about Pn until the end of Section 3.1.

2.2 The null hypothesis of conditional independence

Our univariate test is for the null hypothesis

Xt,n,i,a⊥⊥ Yt,n,j,b | Zt,n for all t ∈ Tn, (1)

for a single dimension/time-offset tuple (i, j, a, b) ∈ Dn. If domain knowledge suggests that we can
restrict Pn to consist of distributions in which the conditional dependencies are time-invariant, then
we can use the alternative hypothesis

Xt,n,i,a ⊥̸⊥ Yt,n,j,b | Zt,n for all t ∈ Tn. (2)

We begin by focusing on time-invariant conditional independence relationships, and we address the
time-varying case afterwards.

Consider the following forecasting example in the univariate setting with dX = 1, dY = 1, dZ ≥ 1.

Example 2.1 (Univariate test for time series forecasting). Suppose we are interested in determining
whether our existing forecasting signals Zt,n render the current value of a new forecasting signal irrel-
evant for forecasting a target seven time steps ahead. Note that Zt,n can consist of current values and
lags of each of the forecasting signals. In this case, we would use the univariate version of our test
with the null hypothesis

Xt,n,1,0⊥⊥ Yt,n,1,7 | Zt,n for all t ∈ Tn.

We can conduct several of these univariate tests and use multiple testing procedures to control
the false discovery rate. However, if we do not require a p-value for each conditional independence
relationship, then we can use the multivariate version of our test. In this case, we use the null hypothesis

Xt,n,i,a⊥⊥ Yt,n,j,b | Zt,n for all t ∈ Tn, for all (i, j, a, b) ∈ Dn. (3)

By grouping together highly correlated dimensions and consecutive time-offsets, one can often construct
a multivariate test that is more powerful than a univariate test based on a single dimension/time-
offset tuple. Note that when using the multivariate test, different alternative hypotheses can be used
depending on whether it is reasonable to restrict Pn to consist of distributions in which the conditional
dependencies are dimension-invariant. As we will explain next, there are many other situations in which
grouping together related time series and using our multivariate test is useful.

Suppose we have time series data from different countries, companies, or cities, as is common in
economics and finance. Write Xℓ

t,n,i,a, Y
ℓ
t,n,j,b, Z

ℓ
t,n to denote Xt,n,i,a, Yt,n,j,b, Zt,n at index ℓ ∈ Ln,

where Ln is an index set (e.g. different locations). We can often gain power by grouping together the
time series in Ln and using the multivariate test with the null hypothesis

Xℓ
t,n,i,a⊥⊥ Y ℓ

t,n,j,b | Zℓ
t,n for all t ∈ Tn, for all ℓ ∈ Ln, (4)
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for a single dimension/time-offset tuple (i, j, a, b) ∈ Dn. Crucially, we allow each of the time series to
be correlated across indices and to have different distributions. We can use the alternative hypothesis

Xℓ
t,n,i,a ⊥̸⊥ Y ℓ

t,n,j,b | Zℓ
t,n for all t ∈ Tn, for some ℓ ∈ Ln, (5)

since we have restricted the collection of distributions Pn to consist of those in which the conditional
dependencies are time-invariant. If we can further restrict Pn so that it consists of distributions with
time-invariant and index-invariant conditional dependencies, then we can use the alternative hypothesis

Xℓ
t,n,i,a ⊥̸⊥ Y ℓ

t,n,j,b | Zℓ
t,n for all t ∈ Tn, for all ℓ ∈ Ln. (6)

The following example is about forecasting a group of time series with dX = 1, dY = 1, dZ ≥ 1,
and |Ln| > 1. In many cases, the multivariate test used in Example 2.2 will have more power than the
univariate test used in Example 2.1.

Example 2.2 (Multivariate test for forecasting a group of time series). As in Example 2.1, we are
interested in forecasting a target seven time steps ahead. We want to determine whether the current
value of a new forecasting signal is relevant or not after accounting for the existing forecasting signals.
However, now we have access to the same set of forecasting signals and targets at each location index
ℓ ∈ Ln. In this case, we would use the multivariate version of our test with the null hypothesis

Xℓ
t,n,1,0⊥⊥ Y ℓ

t,n,1,7 | Zℓ
t,n for all t ∈ Tn, for all ℓ ∈ Ln.

Going forward, we suppress the superscript ℓ ∈ Ln and revert back to the original notation (i.e.
from Xℓ

t,n,i,a, Y
ℓ
t,n,j,b, Z

ℓ
t,n to Xt,n,i,a, Yt,n,j,b, Zt,n). Note that this superscript can always be ignored

outside of the “groups of time series” context, such as when there is only one index (e.g. one location).
To deal with the problem of time-varying conditional dependencies, we suggest modeling the con-

ditional dependencies as though they are stable during certain time windows. If the breakpoints
separating these time windows are known, then we can simply use our conditional independence test
on each of these time windows and use multiple testing procedures to control the false discovery
rate. However, this becomes more challenging if the breakpoints are unknown. In future work, we
will develop a procedure for identifying time windows during which stable conditional dependencies
hold while controlling the false discovery rate. That way, we can focus this manuscript on the main
testing procedure. In Section C.7, we discuss how to test for time-varying conditional independence
relationships at particular points in time by using the framework of locally stationary processes.

2.3 Time-varying regression functions

For a fixed sample size n ∈ N, distribution P ∈ Pn, time t ∈ Tn and dimension/time-offset tuple
(i, j, a, b) ∈ Dn, we can always decompose

Xt,n,i,a = fP,t,n,i,a(Zt,n) + εP,t,n,i,a, Yt,n,j,b = gP,t,n,j,b(Zt,n) + ξP,t,n,j,b, (7)

where fP,t,n,i,a(z) = EP (Xt,n,i,a|Zt,n = z) and gP,t,n,j,b(z) = EP (Yt,n,j,b|Zt,n = z) are the time-
varying regression functions. The observed processes and error processes can all be nonstationary
nonlinear processes. For m = (i, j, a, b) ∈ Dn, denote the error products at time t by

RP,t,n,m = εP,t,n,i,aξP,t,n,j,b.

Next, let f̂t,n,i,a and ĝt,n,j,b be estimates of fP,t,n,i,a and gP,t,n,j,b created by time-varying nonlinear
regressions of (Xt,n,i,a)t∈Tn on (Zt,n)t∈Tn and (Yt,n,j,b)t∈Tn on (Zt,n)t∈Tn , respectively. Let

ε̂t,n,i,a = Xt,n,i,a − f̂t,n,i,a(Zt,n), ξ̂t,n,j,b = Yt,n,j,b − ĝt,n,j,b(Zt,n),

be the corresponding residuals, and denote the product of these residuals at time t by

R̂t,n,m = ε̂t,n,i,aξ̂t,n,j,b, (8)

for m = (i, j, a, b) ∈ Dn. Let R̂t,n = (R̂t,n,m)m∈Dn
be the high-dimensional vector process containing

all the residual products for all dimension/time-offset combinations in Dn.
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2.4 Main ideas of our work and the algorithm

To begin, let us briefly summarize the main ideas behind the univariate version of the original gener-
alized covariance measure (GCM) test from Shah and Peters [SP20]. For this paragraph, momentarily
redefine X, Y to be two random variables and Z to be a random vector. The GCM test is based on the
“weak” conditional independence criterion of Daudin [Dau80], which states that if X ⊥⊥ Y | Z, then
EP [ϕ(X,Z)φ(Y,Z)] = 0 for all functions ϕ ∈ L2

X,Z and φ ∈ L2
Y,Z such that EP [ϕ(X,Z) | Z] = 0 and

EP [φ(Y,Z) | Z] = 0. Thus, under the null hypothesis of conditional independence, the expectation of
the products of errors EP (εξ) from the regressions X = ϕ(Z) + ε and Y = φ(Z) + ξ, or equivalently
the expected conditional covariance EP [CovP (X,Y |Z)], is equal to zero. As discussed in Shah and
Peters [SP20], this can be seen as a generalization of the fact that the partial correlation coefficient,
defined as the correlation between the residuals of linear regressions of X on Z and Y on Z, is equal
to zero if and only if X⊥⊥ Y | Z when (X,Y, Z) are jointly Gaussian. The GCM test is based on the
normalized sum of the products of residuals from the regressions of X on Z and Y on Z.

Now, let us translate the “weak” conditional independence criterion of Daudin [Dau80] into our
setting using the notation from Section 2.1. If Xt,n,i,a⊥⊥ Yt,n,j,b | Zt,n, then

EP [ϕ(Xt,n,i,a,Zt,n)φ(Yt,n,j,b,Zt,n)] = 0,

for all functions ϕ ∈ L2
Xt,n,i,a,Zt,n

and φ ∈ L2
Yt,n,j,b,Zt,n

such that EP [ϕ(Xt,n,i,a,Zt,n) | Zt,n] = 0 and

EP [φ(Yt,n,j,b,Zt,n) | Zt,n] = 0. Hence, under the null hypothesis, the expected conditional covariances,

ρP,t,n,m = EP [CovP (Xt,n,i,a, Yt,n,j,b|Zt,n)],

are always equal to zero for the dimension/time-offset combination m = (i, j, a, b) ∈ Dn. Equiva-
lently, the mean of the error products EP (RP,t,n,m) from the time-varying nonlinear regressions of
(Xt,n,i,a)t∈Tn

on (Zt,n)t∈Tn
and (Yt,n,j,b)t∈Tn

on (Zt,n)t∈Tn
from Section 2.3 will always be zero under

the null. This can be seen as a generalization of the partial correlation coefficient being equal to zero
under conditional independence in the linear-Gaussian time series context; see the related discussion
about Gaussian graphical models for nonstationary time series in Basu and Rao [BR23].

Crucially, the expected conditional covariances ρP,t,n,m can be zero at all times, even under al-
ternatives in which the corresponding conditional dependencies always hold. Consequently, we can
only hope to have power against alternatives in which the time-varying expected conditional covari-
ances ρP,t,n,m are non-zero for at least some times. Hence, our test statistic (10) is designed to detect
non-zero covariances between the errors εP,t,n,i,a and ξP,t,n,j,b at any point in time along the path.

We use a bootstrap-based testing procedure which appeals to the strong Gaussian approximation
in Section B. The key ingredient of this bootstrap procedure is the time-varying covariance structure
of the approximating nonstationary Gaussian process. Define the rolling window estimate of the time-
varying covariance matrices of the vectors of error products by

Σ̂
R

t,n =
1

Ln

(
t∑

s=t−Ln+1

R̂s,n

)⊗2

, (9)

where Ln ∈ N is a lag-window size parameter and the outer product is denoted by v⊗2 = vvT . In the
univariate case with dimensions dX = 1, dY = 1, dZ ≥ 1 and time-offsets A = {a}, B = {b}, we use
the rolling-window estimate of the time-varying variances of the error products

σ̂R
t,n =

1

Ln

(
t∑

s=t−Ln+1

R̂s,n,m

)2

,

where m = (1, 1, a, b) ∈ Dn. We postpone the details about these covariances until Section 3.5, and
we discuss how to select Ln in Section 5.1.

Next, we introduce our test statistic, which is based on the residual products from the time-varying
regressions of (Xt,n,i,a)t∈Tn

on (Zt,n)t∈Tn
and (Yt,n,j,b)t∈Tn

on (Zt,n)t∈Tn
. Define the set of times

Tn,L = {Ln + T−
n − 1, . . . ,T+

n − 1,T+
n },
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and denote its cardinality by Tn,L = |Tn,L|. Denote the entire process containing the residual products

by R̂n = (R̂t,n)t∈Tn,L
. The test statistic based on the maximum ℓp-norm (p ≥ 2) achieved by the

partial sum process is given by

Sn,p(R̂n) = max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t≤s

R̂t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
p

. (10)

For example, we can use ℓ∞-type or ℓ2-type test statistics to achieve high power against sparse or
dense alternatives, respectively. In the univariate case with dimensions dX = 1, dY = 1, dZ ≥ 1
and time-offsets A = {a}, B = {b}, the test statistic reduces to the absolute value of the partial sum
process of residual products

Sn(R̂n,m) = max
s∈Tn,L

∣∣∣∣∣∣ 1√
Tn,L

∑
t≤s

R̂t,n,m

∣∣∣∣∣∣ ,
where m = (1, 1, a, b) ∈ Dn and R̂n,m = (R̂t,n,m)t∈Tn,L

. See Sections C.3 and C.7 for discussions of
alternative test statistics, namely those based on the full sum and those employing kernel smoothing.

The multivariate dGCM test is given by Algorithm 1. The main steps are time-varying regression,
time-varying covariance estimation, and a bootstrap procedure justified by the distribution-uniform
strong Gaussian approximation in Section B. The algorithm for the univariate setting is obtained by

replacing Sn,p(·), Σ̂
R

t,n, R̂t,n, R̂n, R̆
(r)
t,n, R̆

(r)
n with Sn(·), σ̂R

t,n, R̂t,n, R̂n, R̆
(r)
t,n, R̆

(r)
n , respectively.

Algorithm 1 The dynamic generalized covariance measure (dGCM) test

1: Input: Dimensions and time-offsets of interest Dn, time points Tn, data (Xt,n, Yt,n, Zt,n)t∈Tn , test
statistic Sn,p(·), α for the significance level, α′ for the quantile q̂boot1−α′ , number of simulations s

2: for each time t ∈ Tn and dimension/time-offset tuple m = (i, j, a, b) ∈ Dn do

3: Obtain estimates f̂t,n,i,a and ĝt,n,j,b of the time-varying regression functions from (7)

4: Calculate the product of residuals R̂t,n,m = ε̂t,n,i,aξ̂t,n,j,b from (8)
5: end for
6: Select the lag-window size Ln for covariance estimation according to Section 5.1
7: for each time t ∈ Tn,L do

8: Calculate the rolling-window estimates Σ̂
R

t,n of the time-varying covariance matrices from (9)
9: end for

10: for each simulation r = 1, . . . , s do
11: for each time t ∈ Tn,L do

12: Simulate independent Gaussian random vectors R̆
(r)
t,n ∼ N (0, Σ̂

R

t,n)
13: end for
14: Calculate the test statistic Sn,p(R̆

(r)
n ) from (10) using the Gaussian process R̆

(r)
n = (R̆

(r)
t,n)t∈Tn,L

15: end for
16: Calculate the 1− α′ empirical quantile q̂boot1−α′ of (Sn,p(R̆

(r)
n ))sr=1

17: Calculate the test statistic Sn,p(R̂n) from (10) using the residual products R̂n = (R̂t,n)t∈Tn,L

18: if Sn,p(R̂n) > q̂boot1−α′ then
19: Reject the null hypothesis at the level α
20: end if
21: Output: Decision to either reject or fail to reject the null hypothesis at the level α

3 Assumptions and the Theoretical Result for dGCM

In this section, we provide a theoretical guarantee for the dGCM test from Algorithm 1. To do this,
we introduce a theoretical framework for high-dimensional nonstationary nonlinear processes. Our
framework enables hypothesis testing based on the residuals formed from the predictions of black-box
time-varying regression estimators.
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We allow the processes to have long-range temporal dependence and very complicated forms of
nonstationarity which can be both abrupt and smooth. We control the temporal dependence and
nonstationarity of the processes uniformly over collections of distributions by employing versions of
the functional dependence measure of Wu [Wu05] and the total variation-type nonstationarity condition
of Mies and Steland [MS23]. These distribution-uniform assumptions are needed for the uniform level
guarantee for the dGCM test in Theorem 3.1, which is our main theoretical result.

The framework we introduce in this section nests several well-studied classes of processes. In Sec-
tion 4, we show how our framework nests a class of nonstationary processes called locally stationary
processes, which allows for smooth changes over time. We refer interested readers to Dahlhaus [Dah12]
and Dahlhaus et al. [DRW19] for more information about the linear and nonlinear cases, respectively.
Stationary processes arise as a special case in our framework, precisely when there is no nonstation-
arity. Similarly, our framework accommodates temporally independent sequences with time-varying
distributions. The fundamental setting of iid sequences arises as yet another special case when there
is neither nonstationarity nor temporal dependence.

In Section C, we discuss how our framework is compatible with even more types of nonstation-
ary processes. Notably, we explain how our framework nests a very general class of nonstationary
processes called piecewise locally stationary processes. This class extends the framework for locally
stationary processes by permitting both smooth changes and abrupt breakpoints. Also, we consider
a class of nonstationary processes called cyclostationary processes which exhibit repetition over time.
Additionally, we explain how our framework can leverage black-box simulators for the multivariate
process (X,Z) by using simulation-and-regression techniques.

3.1 Nonstationary observed processes

To begin, we introduce the so-called “causal representations” of the processes. Specifically, we view
each dimension of the observed sequence (Xt,n, Yt,n, Zt,n)t∈[n] as the outputs of a time-varying nonlinear
function that is given a sequence of iid inputs. This type of representation has a long history, tracing
back to at least Rosenblatt [Ros61] and Wiener [Wie66], though its importance for the statistical
analysis of time series was first elucidated by Wu [Wu05]. What follows is most similar to the framework
for high-dimensional nonstationary nonlinear processes from Mies and Steland [MS23], which in turn
builds on the framework from Zhou and Wu [ZW09]. For the following assumption, let

HX
t = (ηXt , ηXt−1, . . .), HY

t = (ηYt , ηYt−1, . . .), HZ
t = (ηZt , η

Z
t−1, . . .),

where (ηXt , ηYt , ηZt )t∈Z is a sequence of iid random vectors. Denote the dimensions of ηXt = ηXt,n,

ηYt = ηYt,n, η
Z
t = ηZt,n respectively by dηX = dηX,n, d

η
Y = dηY,n, d

η
Z = dηZ,n, which can change with n.

Assumption 3.1 (Causal representations of the observed processes). Assume that for each time
t ∈ Tn we can represent each dimension of each of the observed processes as the output of an evolving
nonlinear system that was given a sequence of iid inputs:

Xt,n,i = GX
t,n,i(HX

t ), Yt,n,j = GY
t,n,j(HY

t ), Zt,n,k = GZ
t,n,k(HZ

t ).

For each n ∈ N, (i, j, a, b) ∈ Dn, t ∈ Tn, we assume that GX
t,n,i(·), GY

t,n,j(·), GZ
t,n,k(·) are each mea-

surable functions from (Rdη
X )∞, (Rdη

Y )∞, (Rdη
Z )∞ to R — where we endow (Rdη

X )∞, (Rdη
Y )∞, (Rdη

Z )∞

with the σ-algebra generated by all finite projections — such that GX
t,n,i(HX

s ), GY
t,n,j(HY

s ), G
Z
t,n,k(HZ

s )

are each well-defined random variables for each s ∈ Z and (GX
t,n,i(HX

s ))s∈Z, (GY
t,n,j(HY

s ))s∈Z,

(GZ
t,n,k(HZ

s ))s∈Z are each stationary ergodic processes.

To simplify the notation, we have not defined the input sequences for the observed processes
separately for each dimension. Without loss of generality, we can define the measurable functions
GX

t,n,i(·), GY
t,n,j(·), GZ

t,n,k(·) and the inputs ηXt , ηYt , ηZt so that each dimension of the observed processes
can have idiosyncratic inputs.

We will introduce several more causal representations throughout this paper. Let us state some
properties that all causal representations will have to avoid repeating the same ideas each time. The
causal representations will all be measurable functions on (Rdη

)∞ for some dη ∈ N, where we will
always endow (Rdη

)∞ with the σ-algebra generated by all finite projections. The causal mechanism
at a particular time t ∈ Tn with the input sequence up to a particular s ∈ Z is a well-defined random
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variable or vector. Similarly, the process induced by considering the input sequence up to each s ∈ Z
with a fixed causal mechanism is a stationary ergodic process, as in Assumption 3.1.

In view of Assumption 3.1, we have the following causal representations for the observed processes
with all dimensions

Xt,n = GX
t,n(HX

t ) = (GX
t,n,i(HX

t ))i∈[dX ],

Yt,n = GY
t,n(HY

t ) = (GY
t,n,j(HY

t ))j∈[dY ],

Zt,n = GZ
t,n(HZ

t ) = (GZ
t,n,k(HZ

t ))k∈[dZ ].

Also, we have causal representations for each of the dimensions i ∈ [dX ], j ∈ [dY ], k ∈ [dZ ] with
time-offsets a ∈ Ai, b ∈ Bj , c ∈ Ck

Xt,n,i,a = GX
t,n,i,a(HX

t,a) = GX
t+a,n,i(HX

t+a),

Yt,n,j,b = GY
t,n,j,b(HY

t,b) = GY
t+b,n,j(HY

t+b),

Zt,n,k,c = GZ
t,n,k,c(HZ

t,c) = GZ
t+c,n,k(HZ

t+c),

where HX
t,a = (ηXt+a, η

X
t−1+a, . . .), HY

t,b = (ηYt+b, η
Y
t−1+b, . . .), and HZ

t,c = (ηZt+c, η
Z
t−1+c, . . .). We can then

write the causal representation of the vectors with all dimensions and time-offsets as

Xt,n = GX
t,n(HX

t ) = (GX
t,n,i,a(HX

t,a))i∈[dX ],a∈Ai
,

Yt,n = GY
t,n(HY

t ) = (GY
t,n,j,b(HY

t,b))j∈[dY ],b∈Bj
,

Zt,n = GZ
t,n(HZ

t ) = (GZ
t,n,k,c(HZ

t,c))k∈[dZ ],c∈Ck
,

where HX
t = (ηXt , ηXt−1, . . .), HY

t = (ηYt , ηYt−1, . . .), HZ
t = (ηZt , ηZt−1, . . .), and ηXt = ηXt+amax

, ηYt =
ηYt+bmax

, ηZt = ηZt+cmax
.

Let Ω be a sample space, B the Borel sigma-algebra, and (Ω,B) a measurable space. For fixed
n ∈ N, let (Ω,B) be equipped with a family of probability measures (PP )P∈Pn

so that the joint
distribution of the nonlinear stochastic systems

(GX
t,n(HX

s ))t∈[n],s∈Z, (GY
t,n(HY

s ))t∈[n],s∈Z, (GZ
t,n(HZ

s ))t∈[n],s∈Z,

under PP is P ∈ Pn, where the collection of distributions Pn can change with n. The family of
probability measures (PP )P∈Pn

is defined with respect to the same measurable space (Ω,B), but need
not have the same dominating measure. Denote the family of probability spaces by (Ω,B,PP )P∈Pn

and a sequence of such families of probability spaces by ((Ω,B,PP )P∈Pn
)n∈N.

For a given sample size n ∈ N and distribution P ∈ Pn, let EP (·) denote the expectation of a
random variable with distribution determined by P . Let PP (E) denote the probability of an event
E ∈ B. We use the notation oP(·) and OP(·) in the same way that Shah and Peters [SP20] do, so we
replicate their notation here. Let (VP,n)n∈N,P∈Pn

be a family of sequences of random variables with
distributions determined by P ∈ Pn for some collection of distributions Pn which will be made clear
from the context. We write VP,n = oP(1) to mean that for all ϵ > 0, we have

sup
P∈Pn

PP (|VP,n| > ϵ) −→ 0.

Also, by VP,n = OP(1) we mean for all ϵ > 0, there exists a constant K > 0 such that

sup
n∈N

sup
P∈Pn

PP (|VP,n| > K) < ϵ.

Let (WP,n)n∈N,P∈Pn
be another family of sequences of random variables. By VP,n = oP(WP,n) we

mean VP,n = WP,nRP,n and RP,n = oP(1), and by VP,n = OP(WP,n) we mean VP,n = WP,nRP,n and
RP,n = OP(1).

In the rest of this section, we will state distribution-uniform assumptions with respect to a generic
sequence of collections of distributions (Pn)n∈N for the observed processes. Let PCI

0,n be a collection of

distributions for the observed processes such that the null hypothesis is true, and let (PCI
0,n)n∈N be a

sequence of such collections of distributions. In our main result, which we state as Theorem 3.1, we will
assume that these distribution-uniform assumptions hold for a sequence of collections of distributions
(P∗

0,n)n∈N, where P∗
0,n ⊂ PCI

0,n for each n ∈ N. That is, we will make these assumptions for a sequence of
subcollections of distributions for which the global null hypothesis of conditional independence holds.
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3.2 Prediction processes

Next, we introduce causal representations for the prediction processes. For each n ∈ N, t ∈ Tn,
(i, j, a, b) ∈ Dn, let ηalgot,n,i,a, ηalgot,n,j,b be random variables that encode the (possible) stochasticity of
the statistical learning algorithms. If the learning algorithms are not stochastic, then these random
variables can be ignored without loss of generality. Going forward, we will suppress the dependence of
the predictors on ηalgot,n,i,a, η

algo
t,n,j,b to simplify the notation.

Let Df̂
t,n,i,a, D

ĝ
t,n,j,b be the datasets containing the observations used to form the predictors f̂t,n,i,a,

ĝt,n,j,b, and let HDf̂

t,a , HDĝ

t,b be the corresponding input sequences. For example, if only the observations

in Tn up to time t ∈ Tn are used to form the predictor ĝt,n,j,b, then Dĝ
t,n,j,b = (Ys,n,j,b,Zs,n)s≤t and

HDĝ

t,b = (HY
t,b,HZ

t ). Similarly, if all of the observations in Tn are used (i.e. to time T+
n ) to form the

predictor ĝt,n,j,b, then Dĝ
t,n,j,b = (Yt,n,j,b,Zt,n)t∈Tn

and HDĝ

t,b = (HY
T+
n ,b

,HZ
T+
n
).

Denote the sets of times corresponding to Df̂
t,n,i,a, D

ĝ
t,n,j,b by T f̂

t,n,i,a, T
ĝ
t,n,j,b, respectively, and let

T f̂
t,n,i,a = |T f̂

t,n,i,a|, T
ĝ
t,n,j,b = |T ĝ

t,n,j,b| be the cardinalities. For each n ∈ N, t ∈ Tn let M(Z,Y) ⊆ YZ

and M(Z,X ) ⊆ XZ , where X = R, Y = R, and Z = RdZ . Note that dZ can grow with n as discussed
in Section 2.1, although we suppress this in the notation.

Assumption 3.2 (Causal representations of the predictors). For each n ∈ N, (i, j, a, b) ∈ Dn, assume

that the sequences of statistical learning algorithms Af̂
n,i,a = (Af̂

t,n,i,a)t∈Tn
, Aĝ

n,j,b = (Aĝ
t,n,j,b)t∈Tn

consist of the Borel measurable functions

Af̂
t,n,i,a :

{
(Z × X )T

f̂
t,n,i,a −→ M(Z,X )

Df̂
t,n,i,a −→ f̂t,n,i,a,

and

Aĝ
t,n,j,b :

{
(Z × Y)T

ĝ
t,n,j,b −→ M(Z,Y)

Dĝ
t,n,j,b 7→ ĝt,n,j,b,

such that the predictors have the causal representations

f̂t,n,i,a = GAf̂

t,n,i,a(HDf̂

t,a ),

ĝt,n,j,b = GAĝ

t,n,j,b(HDĝ

t,b ),

in view of Assumption 3.1. GAf̂

t,n,i,a(·), GAĝ

t,n,j,b(·) are measurable functions so that GAf̂

t,n,i,a(HDf̂

t,a ),

GAĝ

t,n,j,b(HDĝ

t,b ) are well-defined function-valued random variables.

We make the following assumption for the predictions and prediction errors for some sequence of
collections of distributions (Pn)n∈N.

Assumption 3.3 (Causal representations of the predictions and prediction errors). Assume that the

predictors f̂t,n,i,a, ĝt,n,j,b are Borel measurable functions from RdZ to R such that for each n ∈ N,
t ∈ Tn, (i, j, a, b) ∈ Dn we can represent the predictions and prediction errors as

f̂t,n,i,a(Zt,n) = Gf̂
t,n,i,a(H

f̂
t,a) = [Af̂

t,n,i,a(Xn,i,a,Zn)](Zt,n),

ĝt,n,j,b(Zt,n) = Gĝ
t,n,j,b(H

ĝ
t,b) = [Aĝ

t,n,j,b(Yn,j,b,Zn)](Zt,n),

and

ŵf
P,t,n,i,a = Gŵf

P,t,n,i,a(H
f̂
t,a) = fP,t,n,i,a(Zt,n)− f̂t,n,i,a(Zt,n),

ŵg
P,t,n,j,b = Gŵg

P,t,n,j,b(H
ĝ
t,b) = gP,t,n,j,b(Zt,n)− ĝt,n,j,b(Zt,n),

in view of Assumptions 3.1, 3.2, where the input sequences are

Hf̂
t,a = (HDf̂

t,a ,HZ
t ), Hĝ

t,b = (HDĝ

t,b ,HZ
t ).
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Also, assume that for all n ∈ N, t ∈ Tn, (i, j, a, b) ∈ Dn there exists some q ≥ 2 such that

sup
P∈Pn

EP (|ŵf
P,t,n,i,a|

q) < ∞, sup
P∈Pn

EP (|ŵg
P,t,n,j,b|

q) < ∞.

Gf̂
t,n,i,a(·), Gŵf

P,t,n,i,a(·) and Gĝ
t,n,j,b(·), Gŵg

P,t,n,j,b(·) are measurable functions such that Gf̂
t,n,i,a(H

f̂
t,a),

Gĝ
t,n,j,b(H

ĝ
t,b) and Gŵf

P,t,n,i,a(H
f̂
t,a), G

ŵg

P,t,n,j,b(H
ĝ
t,b) are well-defined real-valued random variables.

In view of Assumption 3.3, we have the following causal representation for all dimensions and
time-offsets of the prediction errors

ŵf
P,t,n = Gŵf

P,t,n(H
f̂
t ) = (ŵf

P,t,n,i,a)i∈[dX ],a∈Ai
,

ŵg
P,t,n = Gŵg

P,t,n(H
ĝ
t ) = (ŵg

P,t,n,j,b)j∈[dY ],b∈Bj
,

where Hf̂
t = (Hf̂

t,a)a∈A and Hĝ
t = (Hĝ

t,b)b∈B .

3.3 Nonstationary error processes

The most important part of our theoretical framework is the causal representation of the process of
error products. For the next assumption, for each a ∈ A, b ∈ B, define the input sequences

Hε
t,a = (ηεt,a, η

ε
t,a−1, . . .), Hξ

t,b = (ηξt,b, η
ξ
t,b−1, . . .), (11)

where (ηεt,a, η
ξ
t,b)t∈Z is a sequence of iid random vectors. For the following assumption, denote the

dimension of ηεt,a = ηεt,a,n by dηε = dηε,n, and the dimension of ηξt,b = ηξt,b,n by dηξ = dηξ,n, both of which
can change with n.

Assumption 3.4 (Causal representations of the error processes). Assume that for each n ∈ N, P ∈ Pn,
(i, j, a, b) ∈ Dn, t ∈ Tn, we can represent the error processes from Section 2.3 as

εP,t,n,i,a = Gε
P,t,n,i,a(Hε

t,a), ξP,t,n,j,b = Gξ
P,t,n,j,b(H

ξ
t,b),

with EP (εP,t,n,i,a|Hĝ
t ) = 0 and EP (ξP,t,n,j,b|Hf̂

t ) = 0, where the input sequences Hĝ
t , H

f̂
t are defined

following Assumption 3.3. Gε
P,t,n,i,a(·) and Gξ

P,t,n,j,b(·) are measurable functions from (Rdη
ε )∞ and

(Rdη
ξ )∞, respectively, to R — where we endow (Rdη

ε )∞ and (Rdη
ξ )∞ with the σ-algebra generated by all

finite projections — so that Gε
P,t,n,i,a(Hε

s,a), G
ξ
P,t,n,j,b(H

ξ
s,b) are well-defined random variables for each

s ∈ Z and (Gε
P,t,n,i,a(Hε

s,a))s∈Z, (G
ξ
P,t,n,j,b(H

ξ
s,b))s∈Z are stationary ergodic processes.

We have not defined the input sequences for the error processes separately for each dimension.
Without loss of generality, the measurable functions Gε

P,t,n,i,a(·), G
ξ
P,t,n,j,b(·) and inputs ηεt,a, η

ξ
t,b can

be defined so that each dimension of the error processes has idiosyncratic inputs.
In view of the causal representations of the univariate error processes, we have the following causal

representations for the high-dimensional nonstationary vector-valued error processes

εP,t,n = Gε
P,t,n(Hε

t ) = (Gε
P,t,n,i,a(Hε

t,a))i∈[dX ],a∈Ai
,

ξP,t,n = Gξ
P,t,n(H

ξ
t ) = (Gξ

P,t,n,j,b(H
ξ
t,b))j∈[dY ],b∈Bj

,

where Hε
t = (ηεt , η

ε
t−1, . . .), H

ξ
t = (ηξt , η

ξ
t−1, . . .) with ηεt = (ηεt,a)a∈A, η

ξ
t = (ηξt,b)b∈B for each t ∈ Z.

Similarly, for each dimension/time-offset tuple m = (i, j, a, b) ∈ Dn the error products at time t can
be represented as

RP,t,n,m = GR
P,t,n,m(HR

t,m) = Gε
P,t,n,i,a(Hε

t,a)G
ξ
P,t,n,j,b(H

ξ
t,b),

where HR
t,m = (ηRt,m, ηRt−1,m, . . .) with ηRt,m = (ηεt,a, η

ε
t,b)

⊤ for each t ∈ Z. Also, we have the following

representation for the high-dimensional nonstationary RDn -valued process of all the products of errors

RP,t,n = GR
P,t,n(HR

t ) = (GR
P,t,n,m(HR

t,m))m=(i,j,a,b)∈Dn
,
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where HR
t = (ηRt , ηRt−1, . . .) and ηRt = (ηεt , η

ξ
t )

⊤ for each t ∈ Z. Note that for a fixed P ∈ Pn, t ∈ Tn,
and n ∈ N we have that GR

P,t,n(HR
s ) is a well-defined high-dimensional random vector for each s ∈ Z

and (GR
P,t,n(HR

s ))s∈Z is a high-dimensional stationary ergodic RDn -valued process.
In view of Assumptions 3.3 and 3.4, for m = (i, j, a, b) ∈ Dn, we can represent the products of the

errors and prediction errors as

ŵg,ε
P,t,n,m = Gŵg,ε

P,t,n,m(Hŵg,ε

t,m ) = ŵg
P,t,n,j,bεP,t,n,i,a,

ŵf,ξ
P,t,n,m = Gŵf,ξ

P,t,n,m(Hŵf,ξ

t,m ) = ŵf
P,t,n,i,aξP,t,n,j,b,

with Hŵg,ε

t,m = (Hĝ
t,b,Hε

t,a) and Hŵf,ξ

t,m = (Hf̂
t,a,H

ξ
t,b). Putting it all together, we have the following

causal representation for all dimensions and time-offsets of the products of errors and prediction errors

ŵg,ε
P,t,n = Gŵg,ε

P,t,n(Hŵg,ε

t ) = (ŵg,ε
P,t,n,m)m=(i,j,a,b)∈Dn

,

ŵf ,ξ
P,t,n = Gŵf,ξ

P,t,n(Hŵf,ξ

t ) = (ŵf,ξ
P,t,n,m)m=(i,j,a,b)∈Dn

,

with Hŵg,ε

t = (Hĝ
t ,Hε

t ) and Hŵf,ξ

t = (Hf̂
t ,H

ξ
t ), where we have suppressed the dependence on n.

Gŵg,ε

P,t,n(·) and Gŵf,ξ

P,t,n(·) are measurable functions such that Gŵg,ε

P,t,n(Hŵg,ε

s ), Gŵf,ξ

P,t,n(Hŵf,ξ

s ) are well-

defined high-dimensional random vectors for each s ∈ Z and (Gŵg,ε

P,t,n(Hŵg,ε

s ))s∈Z, (G
ŵf,ξ

P,t,n(Hŵf,ξ

s ))s∈Z
are high-dimensional stationary ergodic processes.

3.4 Assumptions on dependence and nonstationarity

We impose mild assumptions on the rate of decay in temporal dependence and the degree of non-
stationarity of the error processes. Crucially, these assumptions are stated in a distribution-uniform
manner, which is essential for applying the strong Gaussian approximation in Section B. This will be
further elaborated upon in Section 3.5.

We quantify temporal dependence using the functional dependence measure of Wu [Wu05]. Let

(η̃εt,a, η̃
ξ
t,b)t∈Z be an iid copy of (ηεt,a, η

ξ
t,b)t∈Z. Denote the set of well-defined tuples of error processes,

dimensions, and time-offsets by

E = {(ε, i, a) : i ∈ [dX ], a ∈ Ai} ∪ {(ξ, j, b) : j ∈ [dY ], b ∈ Bj}.

For any tuple (e, l, d) ∈ E corresponding to a well-defined combination of an error process, dimension,
and time-offset, define

H̃e
t,d,h = (ηet,d, . . . , η

e
t−h+1,d, η̃

e
t−h,d, η

e
t−h−1,d, . . .)

to be He
t,d with the input ηet−h,d replaced with the iid copy η̃et−h,d. Similarly, define H̃R

t,m,h as HR
t,m

with the input ηRt−h,m replaced with the iid copy η̃Rt−h,m for m = (i, j, a, b) ∈ Dn, and define H̃R
t,h as

HR
t with the input ηRt−h replaced with the iid copy η̃Rt−h. Next, we define measures of dependence.

Definition 3.1 (Functional dependence measure). We define the following measures of temporal de-
pendence for each n ∈ N, P ∈ Pn, and t ∈ Tn. First, define the L∞ version of the functional
dependence measure for the error processes Ge

P,t,n,l,d(He
t,d) for each (e, l, d) ∈ E with h ∈ N0 as

θe,∞P,t,n,l,d(h) = inf{K ≥ 0 : PP (|Ge
P,t,n,l,d(He

t,d)−Ge
P,t,n,l,d(H̃e

t,d,h)| > K) = 0}.

Second, define the functional dependence measures for the processes of error products GR
P,t,n,m(HR

t,m)
for each m = (i, j, a, b) ∈ Dn with h ∈ N0, and some q ≥ 1 as

θRP,t,n,m(h, q) = [EP (|GR
P,t,n,m(HR

t,m)−GR
P,t,n,m(H̃R

t,m,h)|q)]1/q,

and for the vector-valued process GR
P,t,n(HR

t ) with h ∈ N0, and some q ≥ 1, r ≥ 1 as

θRP,t,n(h, q, r) = [EP (||GR
P,t,n(HR

t )−GR
P,t,n(H̃R

t,h)||qr)]1/q.

For some sequence of collections of distributions (Pn)n∈N, we make the following assumption about
the temporal dependence. We only require the relatively mild assumption that it decays polynomially,
rather than geometrically. Note that we will often write the time of the input sequence as 0 when it
does not matter due to stationarity.
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Assumption 3.5 (Distribution-uniform decay of temporal dependence). Assume that there exist
Θ̄∞ > 0, β̄∞ > 1 such that for all n ∈ N, t ∈ Tn, and error processes (e, l, d) ∈ E, it holds that

sup
P∈Pn

||Ge
P,t,n,l,d(He

0,d)||L∞(P ) ≤ Θ̄∞, sup
P∈Pn

θe,∞P,t,n,l,d(h) ≤ Θ̄∞ · (h ∨ 1)−β̄∞
, h ≥ 0.

For additional control in terms of the product of errors alone, also assume that there exist Θ̄R > 0,
β̄R > 3, q̄R > 4, such that for all n ∈ N, t ∈ Tn, m = (i, j, a, b) ∈ Dn, it holds that

sup
P∈Pn

[EP (|GR
P,t,n,m(HR

0,m)|q̄
R

)]1/q̄
R

≤ Θ̄R, sup
P∈Pn

θRP,t,n,m(h, q̄R) ≤ Θ̄R · (h ∨ 1)−β̄R

, h ≥ 0.

A few remarks are in order. First, the constants in Assumption 3.5 do not depend on n. Second, the
assumptions on the individual error processes can be weakened; see Section C.9 for more discussion.
Third, for all n ∈ N, t ∈ Tn, by Jensen’s inequality we have

sup
P∈Pn

[EP (||GR
P,t,n(HR

0 )||q̄
R

2 )]1/q̄
R

≤ D
1
2
n Θ̄

R, sup
P∈Pn

θRP,t,n(h, q̄
R, 2) ≤ D

1
2
n Θ̄

R · (h ∨ 1)−β̄R

, h ≥ 0.

Next, for some sequence of collections of distributions (Pn)n∈N, we make the following assumption
to control the nonstationarity of the process of error products.

Assumption 3.6 (Distribution-uniform total variation condition for nonstationarity). Recall Θ̄R > 0
from Assumption 3.5. Assume that for each n ∈ N, there exists a constant Γ̄R

n ≥ 1 such that

sup
P∈Pn

 T+
n∑

t=T−
n +1

(
EP ||GR

P,t,n(HR
0 )−GR

P,t−1,n(HR
0 )||22

)1/2 ≤ Θ̄RΓ̄R
n .

3.5 Theoretical result for dGCM

We present the theoretical result that justifies the bootstrap procedure described in Algorithm 1. This
result relies on time-varying nonlinear regression for nonstationary processes and the distribution-
uniform strong Gaussian approximation from Section B applied to the process of error products.
The approximating nonstationary Gaussian process has a time-varying covariance structure, which is
explicitly characterized by local long-run covariance matrices.

Definition 3.2 (Local long-run covariance matrices of the process of error products). For each P ∈ Pn,
t ∈ Tn, n ∈ N, define the local long-run covariance matrix ΣR

P,t,n ∈ RDn×Dn of the RDn-valued

stationary process (GR
P,t,n(HR

t ))t∈Z by

ΣR
P,t,n =

∑
h∈Z

CovP (G
R
P,t,n(HR

0 ),GR
P,t,n(HR

h )).

In view of the Gaussian approximation theory developed in Mies and Steland [MS23], we only
require an estimator of the cumulative covariance matrices of the error products

QR
P,t,n =

t∑
s=T−

n

ΣR
P,s,n,

rather than the local long-run covariance matrices at each time individually. This is critical for the
practical applicability of our method, as estimating individual local long-run covariance matrices can
be extremely challenging in practice. Specifically, we use the estimator

Q̂R
t,n =

t∑
s=Ln+T−

n −1

1

Ln

(
s∑

r=s−Ln+1

R̂r,n

)⊗2

, (12)

for some lag-window size Ln ∈ N. We discuss how to select Ln in practice using the minimum volatility
method in Section 5.1. Going forward, denote QR

P,n = (QR
P,t,n)t∈Tn,L

and Q̂R
n = (Q̂R

t,n)t∈Tn,L
, where

Tn,L = {Ln + T−
n − 1, . . . ,T+

n − 1,T+
n }.
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To account for the estimation errors for the time-varying regression functions and the cumulative
covariance matrices, as well as the error for the Gaussian approximation, we introduce offsets τn −→ 0,
νn −→ 0 so that τn = o(log−(1+δ)(Tn)) for some δ > 0 and

νn ≫ log(Tn)Dn

[(
Dn

Tn

)2ξ(q̄R,β̄R)

+ τ−2
n (φn,1 + φn,2)

]
, (13)

where

φn,1 = T
− 1

2
n (Γ̄R

n )
1
2L

1
4
n + T

− 1
4

n D
1
4
nL

1
4
n + L

− 1
2

n + L
1− β̄R

2
n + T−1

n ,

comes from the covariance estimation error, and

φn,2 = τ
7
2
n D

− 5
4

n + τ7nD
− 5

2
n ,

comes from the time-varying regression function estimation errors. Also, the lag-window size Ln

from (12) must satisfy Ln ≍ T ζ
n for some ζ ∈ (0, 1

2 ) so that τ−6
n D2

nL
−1
n = o(1) and Γ̄R

nT
−1
n D2

nτ
−6
n L

1
2
n =

o(1), where Γ̄R
n is from Assumption 3.6. We see that the offsets depend on the number of observations

Tn from Section 2.1, the intrinsic dimensionality Dn from Section 2.1, the degree of nonstationarity
Γ̄R
n from Assumption 3.6, and the lag-window parameter Ln from (12). ξ(q̄R, β̄R) is a rate defined in

Section B that depends on the constants β̄R, q̄R from Assumption 3.5.
The following result establishes the validity of our bootstrap-based testing procedure described in

Algorithm 1, provided that the previously stated assumptions hold and the prediction errors

ŵf
P,t,n,i,a = fP,t,n,i,a(Zt,n)− f̂t,n,i,a(Zt,n),

ŵg
P,t,n,j,b = gP,t,n,j,b(Zt,n)− ĝt,n,j,b(Zt,n),

converge to zero sufficiently fast, in some sense. If it were known, we could correctly calibrate our test

with the (random) quantile function q̂ of Sn,p(R̆n), where R̆n = (R̆t,n)t∈Tn,L
and R̆t,n ∼ N (0, Σ̂

R

t,n)
for all t ∈ Tn,L. In practice, q̂ is numerically approximated by conducting a large number of Monte
Carlo simulations, and we use q̂boot from Algorithm 1 in its place.

Theorem 3.1. Suppose that Assumptions 3.1, 3.2, 3.3, 3.4, 3.5, 3.6 related to the temporal dependence
and nonstationarity of the processes all hold for the sequence of collections of distributions (P∗

0,n)n∈N,

where P∗
0,n ⊂ PCI

0,n for each n ∈ N. Further, suppose that

sup
P∈P∗

0,n

max
(i,j,a,b)∈Dn

max
t∈Tn

EP

(∣∣∣ŵf
P,t,n,i,a

∣∣∣2) 1
2

EP

(∣∣∣ŵg
P,t,n,j,b

∣∣∣2) 1
2

= o(T
− 1

2
n τ7nD

− 3
2

n ),

sup
P∈P∗

0,n

max
i∈[dX ],a∈Ai

max
t∈Tn

EP

(∣∣∣ŵf
P,t,n,i,a

∣∣∣2) 1
2

= o(τ7nD
− 5

2
n ),

sup
P∈P∗

0,n

max
j∈[dY ],b∈Bj

max
t∈Tn

EP

(∣∣∣ŵg
P,t,n,j,b

∣∣∣2) 1
2

= o(τ7nD
− 5

2
n ).

If the offsets τn −→ 0 and νn −→ 0 are chosen such that condition (13) holds, then we have

lim sup
n−→∞

sup
P∈P∗

0,n

PP

(
Sn,p(R̂n) > q̂1−α+νn

+ τn

)
≤ α.

The above result demonstrates that the dGCM test possesses a property known as rate double
robustness. This property means that we only require modest convergence rates for the products of
the prediction errors, rather than for each prediction error individually. This feature of the dGCM
test can be especially useful in the contexts of causal discovery for time-lagged effects and variable
selection in time series forecasting. In these applications, a faster convergence rate of a nowcasting
model can compensate for a slower convergence rate of a forecasting model, or vice versa.
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4 dGCM with Sieve Time-Varying Regression (Sieve-dGCM)

The purpose of this section is to demonstrate that the convergence rates required by Theorem 3.1
for estimating the time-varying regression functions can be achieved. To show this, we consider an
instantiation of the dynamic generalized covariance measure (dGCM) test based on the sieve time-
varying nonlinear regression estimator from Ding and Zhou [DZ21]. We refer to this instantiation of
the dGCM test as the Sieve-dGCM test.

We prove that, under mild assumptions about the temporal dependence and nonstationarity of the
processes, the sieve estimator achieves the required convergence rates and the Sieve-dGCM test has
asymptotic Type-I error control. In Section 5, we study the finite sample performance of the Sieve-
dGCM test. Along the way, in Section 5.1, we introduce a novel cross-validation scheme which we use
for selecting the parameters of the sieve estimator.

In this section, we use the framework of locally stationary processes [Dah97; ZW09; Dah12;
DRW19]. This is a well-studied class of nonstationary processes that fits within the general trian-
gular array framework for nonstationary processes from Section 3. We note that there are several
other time-varying regression estimators for locally stationary processes; see [ZW15; YN21; CSW22].

4.1 Setting and notation

We follow Dahlhaus [Dah97] in rescaling time to the unit interval t/n ∈ [0, 1], so that infill asymptotics
can be used to study nonstationary processes. In this setting, the sample size n no longer corresponds
to getting information about the future. Instead, as n increases we get more observations about each
local structure of the nonstationary process. Zhou and Wu [ZW09] introduced the framework for
representing locally stationary processes as nonlinear functions of iid inputs as in Wu [Wu05].

We use the same notation as Section 2.1, with the only difference being that we fix the number of
dimensions dZ and time-offsets Ck for each dimension k ∈ [dZ ]. We still allow the number of dimensions
dX = dX,n, dY = dY,n and time-offsets Ai, Bj for each i ∈ [dX ], j ∈ [dY ] to grow with n. Define A,
B, C as the collection of all time-offsets as in Section 2.1, where A = An, B = Bn and C is fixed. We
emphasize that there is no inherent necessity for fixing the number of dimensions dZ and time-offsets
Ck. Our reason for doing this is because we want to leverage the existing theoretical results for the
sieve estimator from Ding and Zhou [DZ21]. Future investigations can study the performance of the
sieve estimator in the high-dimensional setting, so that we can allow the number of dimensions dZ and
time-offsets Ck to grow with n.

We will still use the notation Tn for the subset of original times in which all time-offsets of each
dimension of Xt,n, Yt,n, and Zt,n are actually observed,

Tn = {1−min(amin, bmin, cmin), n−max(amax, bmax, cmax)} ⊆ {1, . . . , n}.

Also, we will still denote Tn = |Tn|, T−
n = min(Tn), and T+

n = max(Tn). Similarly, denote the
corresponding interval of rescaled times in which all time-offsets are well-defined by

Un =

[
1

n
− min(amin, bmin, cmin)

n
, 1− max(amax, bmax, cmax)

n

]
⊂ [0, 1],

and denote U−
n = min(Un), and U+

n = max(Un).
Recall the index set containing the dimensions and time-offsets of interest

Dn ⊆ {(i, j, a, b) : i ∈ [dX ], j ∈ [dY ], a ∈ Ai, b ∈ Bj},

where Ai, Bj are the time-offsets for dimensions i ∈ [dX ], j ∈ [dY ]. Again, we will often refer to
the dimension/time-offset tuple by m = (i, j, a, b) ∈ Dn to lighten the notation. Denote cardinality
Dn = |Dn| which may grow with n.

4.2 Locally stationary observed processes

Next, we introduce the causal representation of locally stationary processes, which is most similar to
Ding and Zhou [DZ21] and Example 3 in Mies and Steland [MS23]. This representation is different than
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the previous causal representation from Assumption 3.1, because we now assume that the nonlinear
stochastic system is well-defined for all rescaled times. For the following assumption, let

HX
t = (ηXt , ηXt−1, . . .), HY

t = (ηYt , ηYt−1, . . .), HZ
t = (ηZt , η

Z
t−1, . . .),

where (ηXt , ηYt , ηZt )t∈Z is an iid sequence of random vectors. Denote the dimensions of ηXt = ηXt,n,

ηYt = ηYt,n, η
Z
t = ηZt,n respectively by dηX = dηX,n, d

η
Y = dηY,n, d

η
Z = dηZ,n, which can change with n.

Assumption 4.1 (Causal representations of the observed processes). Assume that we can represent
each dimension of each of the observed processes as the output of an evolving nonlinear system that
was given a sequence of iid inputs:

Xt,n,i = G̃X
n,i(t/n,HX

t ), Yt,n,j = G̃Y
n,j(t/n,HY

t ), Zt,n,k = G̃Z
n,k(t/n,HZ

t ),

where the systems are defined for all u ∈ [0, 1] by

X̃t,n,i(u) = G̃X
n,i(u,HX

t ), Ỹt,n,j(u) = G̃Y
n,j(u,HY

t ), Z̃t,n,k(u) = G̃Z
n,k(u,HZ

t ),

so that we have Xt,n,i = X̃t,n,i(t/n), Yt,n,j = Ỹt,n,j(t/n), Zt,n,k = Z̃t,n,k(t/n).

For each n ∈ N, (i, j, a, b) ∈ Dn, t ∈ Tn, we assume that G̃X
n,i(u, ·), G̃Y

n,j(u, ·), G̃Z
n,k(u, ·) are mea-

surable functions from (Rdη
X )∞, (Rdη

Y )∞, (Rdη
Z )∞, respectively, to R — where we endow (Rdη

X )∞,
(Rdη

Y )∞, (Rdη
Z )∞ with the σ-algebra generated by all finite projections — such that G̃X

n,i(u,HX
s ),

G̃Y
n,j(u,HY

s ), G̃
Z
n,k(u,HZ

s ) are each well-defined random variables for each s ∈ Z and (G̃X
n,i(u,HX

s ))s∈Z,

(G̃Y
n,j(u,HY

s ))s∈Z, (G̃
Z
n,k(u,HZ

s ))s∈Z are each stationary ergodic processes.

As in Section 3.1, we have not defined the input sequences for the observed processes separately for
each dimension. However, without loss of generality, we can define the measurable functions G̃X

n,i(u, ·),
G̃Y

n,j(u, ·), G̃Z
n,k(u, ·) and the inputs ηXt , ηYt , ηZt so that each dimension of the observed processes can

have idiosyncratic inputs.
In light of Assumption 4.1, we have the following causal representations for all dimensions with no

time-offsets:

X̃t,n(u) = G̃X
n (u,HX

t ) = (G̃X
n,i(u,HX

t ))i∈[dX ],

Ỹt,n(u) = G̃Y
n (u,HY

t ) = (G̃Y
n,j(u,HY

t ))j∈[dY ],

Z̃t,n(u) = G̃Z
n (u,HZ

t ) = (G̃Z
n,k(u,HZ

t ))k∈[dZ ],

so that we have Xt,n = X̃t,n(t/n), Yt,n = Ỹt,n(t/n), Zt,n = Z̃t,n(t/n). For each n ∈ N, we have causal
representations for dimensions i ∈ [dX ], j ∈ [dY ], k ∈ [dZ ] with time-offsets a ∈ Ai, b ∈ Bj , c ∈ Ck

X̃t,n,i,a(u) = G̃X
n,i,a(u,HX

t,a) = G̃X
n,i(u+ a/n,HX

t+a),

Ỹt,n,j,b(u) = G̃Y
n,j,b(u,HY

t,b) = G̃Y
n,j(u+ b/n,HY

t+b),

Z̃t,n,k,c(u) = G̃Z
n,k,c(u,HZ

t,c) = G̃Z
n,k(u+ c/n,HZ

t+c),

where HX
t,a = (ηXt+a, η

X
t−1+a, . . .), HY

t,b = (ηYt+b, η
Y
t−1+b, . . .), and HZ

t,c = (ηZt+c, η
Z
t−1+c, . . .), so that we

have Xt,n,i,a = X̃t,n,i,a(t/n), Yt,n,j,b = Ỹt,n,j,b(t/n), Zt,n,k,c = Z̃t,n,k,c(t/n) for each dimension of the
observed sequence with time-offset. We can then write the causal representation of the vectors with
all dimensions and time-offsets as

X̃t,n(u) = G̃X
n (u,HX

t ) = (G̃X
n,i,a(u,HX

t,a))i∈[dX ],a∈Ai
,

Ỹt,n(u) = G̃Y
n (u,HY

t ) = (G̃Y
n,j,b(u,HY

t,b))j∈[dY ],b∈Bj
,

Z̃t,n(u) = G̃Z
n (u,HZ

t ) = (G̃Z
n,k,c(u,HZ

t,c))k∈[dZ ],c∈Ck
,

where HX
t = (ηXt , ηXt−1, . . .), HY

t = (ηYt , ηYt−1, . . .), HZ
t = (ηZt , ηZt−1, . . .), and ηXt = ηXt+amax

, ηYt =

ηYt+bmax
, ηZt = ηZt+cmax

, so that we have Xt,n = X̃t,n(t/n), Yt,n = Ỹt,n(t/n), Zt,n = Z̃t,n(t/n) for the
observed sequence including all dimensions and time-offsets.
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Let Ω be a sample space, B the Borel sigma-algebra, and (Ω,B) a measurable space. For fixed
n ∈ N, let (Ω,B) be equipped with a family of probability measures (PP )P∈Pn so that the joint
distribution of the nonlinear stochastic systems

(G̃X
n (u,HX

t ))u∈[0,1],t∈Z, (G̃Y
n (u,HY

t ))u∈[0,1],t∈Z, (G̃Z
n (u,HZ

t ))u∈[0,1],t∈Z

under PP is P ∈ Pn, where the collection of distributions Pn can change with n. The family of
probability measures (PP )P∈Pn

is defined with respect to the same measurable space (Ω,B), but need
not have the same dominating measure.

We use the same null hypotheses of conditional independence as those in Section 2.2. Again, for
each n ∈ N, we denote the collection of distributions such that the null hypothesis is true by PCI

0,n. In
the locally stationary setting, the null hypothesis

Xt,n,i,a⊥⊥ Yt,n,j,b | Zt,n for all t ∈ Tn, for all (i, j, a, b) ∈ Dn, (14)

can be written equivalently as

X̃t,n,i,a(t/n)⊥⊥ Ỹt,n,j,b(t/n) | Z̃t,n(t/n) for all t ∈ Tn, for all (i, j, a, b) ∈ Dn,

where Dn only contains a single dimension/time-offset tuple in the univariate setting.
We will state more assumptions in the rest of this section for a generic sequence of collections of

distributions (Pn)n∈N. In Theorem 4.1, we will assume that these conditions hold for the sequence of
collections of distributions (P∗

0,n)n∈N, where P∗
0,n ⊂ PCI

0,n for each n ∈ N. Note that we make stronger
assumptions in this section than in Section 3 to ensure that the sieve estimators satisfy the convergence
rate requirements of Theorem 3.1.

4.3 Sieve time-varying nonlinear regression estimator

For a given sample size n ∈ N, distribution P ∈ Pn, time t ∈ Tn, and dimension/time-offset tuple
(i, j, a, b) ∈ Dn, we consider the time-varying nonlinear regression model

Xt,n,i,a = fP,n,i,a(t/n,Zt,n) + εP,t,n,i,a, Yt,n,j,b = gP,n,j,b(t/n,Zt,n) + ξP,t,n,j,b,

where fP,n,i,a(u, z) and gP,n,j,b(u, z) are smooth functions of rescaled time u and covariate values z with
fP,n,i,a(t/n, z) = EP (Xt,n,i,a|Zt,n = z) and gP,n,j,b(t/n, z) = EP (Yt,n,j,b|Zt,n = z). We emphasize that
the functions fP,n,i,a(u, z) and gP,n,j,b(u, z) depend on rescaled time u rather than “real time” t, as
in the literature on nonparametric regression for locally stationary processes [Vog12; ZW15; YN21;
CSW22; DZ21]. For m = (i, j, a, b) ∈ Dn, denote the error products at time t by

RP,t,n,m = εP,t,n,i,aξP,t,n,j,b,

and the corresponding residual products by

R̂t,n,m = ε̂t,n,i,aξ̂t,n,j,b,

where ε̂t,n,i,a = Xt,n,i,a − f̂t,n,i,a(t/n,Zt,n) and ξ̂t,n,j,b = Yt,n,j,b − ĝt,n,j,b(t/n,Zt,n).

The estimates f̂t,n,i,a and ĝt,n,j,b of the functions fP,n,i,a and gP,n,j,b are formed by regressing
(Xt,n,i,a)t∈Tn

on (Zt,n)t∈Tn
and (Yt,n,j,b)t∈Tn

on (Zt,n)t∈Tn
, respectively, using the time-varying nonlin-

ear sieve regression estimator introduced below. The subscript t in f̂t,n,i,a and ĝt,n,j,b is to indicate that

we allow for sequential estimation, which will be discussed in Remark 4.1. Let R̂t,n = (R̂t,n,m)m∈Dn

be the high-dimensional vector process containing the residual products for all dimension/time-offset
combinations in Dn. The observed processes X, Y , Z and error processes ϵ, ξ can all be locally
stationary processes; see Section 4.5 for the details.

For some sequence of collections of distributions (Pn)n∈N, we make the following assumption.

Assumption 4.2 (Additive form and regularity). For each sample size n ∈ N, distribution P ∈ Pn,
rescaled time u ∈ Un, and dimension/time-offset tuple (i, j, a, b) ∈ Dn, assume that

fP,n,i,a(u, z) =

dZ∑
k=1

Ck∑
c=1

fP,n,i,a,k,c(u, zk,c),

gP,n,j,b(u, z) =

dZ∑
k=1

Ck∑
c=1

gP,n,j,b,k,c(u, zk,c),
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where fP,n,i,a,k,c : Un×R −→ R and gP,n,j,b,k,c : Un×R −→ R are time-varying partial response functions,
so that we have

EP (Xt,n,i,a|Zt,n = z) =

dZ∑
k=1

Ck∑
c=1

fP,n,i,a,k,c(t/n, zk,c),

EP (Yt,n,j,b|Zt,n = z) =

dZ∑
k=1

Ck∑
c=1

gP,n,j,b,k,c(t/n, zk,c),

for each time t ∈ Tn.
Further, assume for all n ∈ N, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj, k ∈ [dZ ], c ∈ Ck, u ∈ Un, there

exists some q ≥ 2 such that

sup
P∈Pn

EP (|fP,n,i,a,k,c(u, Zt,n,k,c)|q) < ∞,

sup
P∈Pn

EP (|gP,n,j,b,k,c(u, Zt,n,k,c)|q) < ∞.

To fix ideas, we use the algebraic mapping h : [−1, 1] −→ R from Example 3.1 in Ding and Zhou
[DZ21] with positive scaling factor s = 1,

h(z̃) =


−∞, z̃ = −1,

z̃√
1−z̃2

, z̃ ∈ (−1, 1),

∞, z̃ = 1.

See the discussion preceding Definition 3.1 in Ding and Zhou [DZ21] for additional details. For some
sequence of collections of distributions (Pn)n∈N, for each n ∈ N, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj , k ∈
[dZ ], c ∈ Ck, and P ∈ Pn, we relate the time-varying partial response functions fP,n,i,a,k,c : Un×R −→ R
and gP,n,j,b,k,c : Un × R −→ R to f̃P,n,i,a,k,c : [0, 1] × [0, 1] −→ R and g̃P,n,j,b,k,c : [0, 1] × [0, 1] −→ R,
respectively, where

f̃P,n,i,a,k,c(u
∗, z∗) = fP,n,i,a,k,c(U−

n + u∗(U+
n − U−

n ), h(2z
∗ − 1)),

g̃P,n,j,b,k,c(u
∗, z∗) = gP,n,j,b,k,c(U−

n + u∗(U+
n − U−

n ), h(2z
∗ − 1)),

with U−
n = min(Un) and U+

n = max(Un).
For some sequence of collections of distributions (Pn)n∈N, we make the following assumption.

Assumption 4.3 (Smoothness). For each n ∈ N, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj, k ∈ [dZ ], c ∈ Ck,
and P ∈ Pn, assume that for each fixed u∗ ∈ [0, 1] we have

f̃P,n,i,a,k,c(u
∗, ·) ∈ C∞([0, 1]), g̃P,n,j,b,k,c(u

∗, ·) ∈ C∞([0, 1]),

and for each fixed z∗ ∈ [0, 1] we have

f̃P,n,i,a,k,c(·, z∗) ∈ C∞([0, 1]), g̃P,n,j,b,k,c(·, z∗) ∈ C∞([0, 1]),

where C∞([0, 1]) denotes the space of functions on [0, 1] that are infinitely differentiable.

If Assumption 4.3 holds, then by Theorem 3.1 of Ding and Zhou [DZ21] we can approximate the
time-varying partial response functions by

fP,n,i,a,k,c(u, z) ≈
c̃n∑

ℓ1=1

d̃n∑
ℓ2=1

βf
P,n,i,a,k,c,ℓ1,ℓ2

bℓ1,ℓ2(u, z),

gP,n,j,b,k,c(u, z) ≈
c̃n∑

ℓ1=1

d̃n∑
ℓ2=1

βg
P,n,j,b,k,c,ℓ1,ℓ2

bℓ1,ℓ2(u, z),

where {bℓ1,ℓ2(u, z)} = {ϕℓ1(u)φℓ2(z)} are basis functions and {βf
P,n,i,a,k,c,ℓ1,ℓ2

}, {βg
P,n,j,b,k,c,ℓ1,ℓ2

} are
coefficients which we can estimate with OLS. The numbers of basis functions for time and the co-
variate values — denoted by c̃n and d̃n, respectively — are chosen to increase with the sample size
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n at some rate. To fix ideas, we will use Legendre polynomials as the basis functions for both the
theoretical analysis in this section and the numerical simulations in Section 5. Specifically, for each
ℓ1 ∈ [c̃n] and ℓ2 ∈ [d̃n], let the basis functions for time {ϕℓ1(u)} and the covariate values {φℓ2(z)} be
mapped Legendre polynomials as in Example C.2 and Section 3.1.1 of Ding and Zhou [DZ21]. It is
straightforward to replace the Legendre polynomials used in our theoretical analysis and simulations
with trigonometric polynomials, wavelets, or other Jacobi polynomials.

Next, we introduce the sieve estimators for the time-varying regression functions. Although we do
not discuss this topic in detail here, we point interested readers to further discussions of asymptotically
optimal linear forecasting for locally stationary processes [DZ23; KR24; CZ25]. We expect similar
results for asymptotically optimal nonlinear forecasting to be developed over the next few years.

Remark 4.1 (Sequential sieve estimation). Our formulation of the sieve estimator from Ding and
Zhou [DZ21] accommodates sequential estimation, in the sense that the predictors for rescaled time
t/n are only constructed using the information up to rescaled time t/n. We emphasize that sequential
estimation is not required for all settings, particularly when certain exogeneity conditions hold. The
need for sequential estimation in some settings is due to the martingale difference sequence condition
imposed on the error processes in Assumption 3.4 (c.f. Assumption 4.4), which becomes relevant when
using our test for variable selection for forecasting and causal inference for time-lagged effects. Note
that the same convergence rates are attained whether or not sequential estimation is used, due to the
infill asymptotic framework of locally stationary processes. That is, because more observations for each
local structure become available as n grows.

Recall the following notation from Section 3.2. Let Df̂
t,n,i,a, Dĝ

t,n,j,b be the datasets used to

form the estimators f̂t,n,i,a(t/n, ·), ĝt,n,j,b(t/n, ·) of the time-varying regression functions at rescaled

time t/n ∈ Un, let HDf̂

t,a , HDĝ

t,b be the corresponding input sequences, and let T f̂
t,n,i,a, T

ĝ
t,n,j,b be the

corresponding sets of times with T f̂
t,n,i,a = |T f̂

t,n,i,a|, T
ĝ
t,n,j,b = |T ĝ

t,n,j,b|. Note that each of the estima-

tors f̂t,n,i,a,k,c(t/n, ·), ĝt,n,j,b,k,c(t/n, ·) of the corresponding time-varying partial response functions at
rescaled time t/n ∈ Un may have different numbers of basis functions. Without confusion, we will write

the numbers of basis functions as c̃n and d̃n instead of c̃f̂t,n,i,a,k,c, c̃
ĝ
t,n,j,b,k,c and d̃f̂t,n,i,a,k,c, d̃

ĝ
t,n,j,b,k,c

to simplify the presentation below.
For some fixed n ∈ N, t ∈ Tn, and (i, j, a, b) ∈ Dn, denote the design matrices by Z̄t,n,i,a ∈

RT f̂
t,n,i,a×dZ c̃nd̃n and Z̄t,n,j,b ∈ RT ĝ

t,n,j,b×dZ c̃nd̃n . The (s, p)-th entries of Z̄t,n,i,a and Z̄t,n,j,b are

Z̄
(s,p)
t,n,i,a = ϕℓ1,p(ts/n)φℓ2,p(Zts,n,kp,cp),

Z̄
(s,p)
t,n,j,b = ϕℓ1,p(ts/n)φℓ2,p(Zts,n,kp,cp),

where we use mappings for the rows s 7→ ts ∈ T f̂
t,n,i,a and s 7→ ts ∈ T ĝ

t,n,j,b which maintain the sequential
order of time (i.e. ts1 < ts2 if s1 < s2), and some mappings for the columns p 7→ (kp, cp, ℓ1,p, ℓ2,p)
which determine orderings for the dimension/time-offset/basis-index combinations, where kp ∈ [dZ ],

cp ∈ Ckp , ℓ1,p ∈ [c̃n], ℓ2,p ∈ [d̃n]. That is, each row corresponds to one time and each column
corresponds to one dimension/time-offset combination with a particular basis-index combination. For
each n ∈ N, P ∈ Pn, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj the (time-invariant) coefficient vectors

βf
P,n,i,a = (βf

P,n,i,a,k,c,ℓ1,ℓ2
)⊤k,c,ℓ1,ℓ2 ∈ RdZ c̃nd̃n ,

βg
P,n,j,b = (βg

P,n,j,b,k,c,ℓ1,ℓ2
)⊤k,c,ℓ1,ℓ2 ∈ RdZ c̃nd̃n ,

have the following OLS estimators

β̂f
t,n,i,a = (Z̄

⊤
t,n,i,aZ̄t,n,i,a)

−1Z̄
⊤
t,n,i,aX̄t,n,i,a = (β̂f

t,n,i,a,k,c,ℓ1,ℓ2
)⊤k,c,ℓ1,ℓ2 ∈ RdZ c̃nd̃n ,

β̂g
t,n,j,b = (Z̄

⊤
t,n,j,bZ̄t,n,j,b)

−1Z̄
⊤
t,n,j,bȲt,n,j,b = (β̂g

t,n,j,b,k,c,ℓ1,ℓ2
)⊤k,c,ℓ1,ℓ2 ∈ RdZ c̃nd̃n ,

where

X̄t,n,i,a = (Xt,n,i,a)
⊤
t∈T f̂

t,n,i,a

∈ RT f̂
t,n,i,a , Ȳt,n,j,b = (Yt,n,j,b)

⊤
t∈T ĝ

t,n,j,b

∈ RT ĝ
t,n,j,b .
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Finally, the estimators of the time-varying regression functions fP,n,i,a(t/n, ·) and gP,n,j,b(t/n, ·) at
rescaled time t/n ∈ Un are given by

f̂t,n,i,a(t/n, ·) =
dZ∑
k=1

Ck∑
c=1

f̂t,n,i,a,k,c(t/n, ·),

ĝt,n,j,b(t/n, ·) =
dZ∑
k=1

Ck∑
c=1

ĝt,n,j,b,k,c(t/n, ·),

where the estimators of the time-varying partial response functions fP,n,i,a,k,c(t/n, ·) and gP,n,j,b,k,c(t/n, ·)
at rescaled time t/n ∈ Un are given by

f̂t,n,i,a,k,c(t/n, ·) =
c̃n∑

ℓ1=1

d̃n∑
ℓ2=1

β̂f
t,n,i,a,k,c,ℓ1,ℓ2

bℓ1,ℓ2(t/n, ·),

ĝt,n,j,b,k,c(t/n, ·) =
c̃n∑

ℓ1=1

d̃n∑
ℓ2=1

β̂g
t,n,j,b,k,c,ℓ1,ℓ2

bℓ1,ℓ2(t/n, ·).

Although we only discuss the sieve estimator here, we emphasize that any black-box time-varying
regression estimator can be used with the dGCM test. For example, we can use time-varying regression
estimators based on kernel smoothing [Vog12; ZW15; YN21; CSW22; DZ21]. To use kernel smoothing
estimators for sequential estimation, we can use one-sided temporal kernels so that observations after
rescaled time t/n receive a weight of zero. This is practically important because “local” nonparametric
estimators are naturally far more computationally efficient for sequential estimation than “global”
nonparametric estimators in the absence of efficient online estimation procedures for the latter.

4.4 Locally stationary error processes

We will now introduce the causal representations of the locally stationary error processes from Sec-
tion 4.3. For each a ∈ A, b ∈ B, define the input sequences

Hε
t,a = (ηεt,a, η

ε
t,a−1, . . .), Hξ

t,b = (ηξt,b, η
ξ
t,b−1, . . .),

where (ηεt,a, η
ξ
t,b)t∈Z is a sequence of iid random vectors. Denote the dimension of ηεt,a = ηεt,a,n by

dηε = dηε,n and the dimension of ηξt,b = ηξt,b,n by dηξ = dηξ,n, both of which can change with n. For the

next assumption, let Hf̂
t = (Hf̂

t,a)a∈A, Hĝ
t = (Hĝ

t,b)b∈B and Hf̂
t,a = (HDf̂

t,a ,HZ
t ), Hĝ

t,b = (HDĝ

t,b ,HZ
t ),

where the input sequences HDf̂

t,a , HDĝ

t,b were defined in Section 4.3 and HZ
t was defined in Section 4.2.

Assumption 4.4 (Causal representations of the error processes). Assume that for each n ∈ N, P ∈ Pn,
(i, j, a, b) ∈ Dn, t ∈ Tn, the error processes from Section 4.3 can be represented as

εP,t,n,i,a = G̃ε
P,n,i,a(t/n,Hε

t,a), ξP,t,n,j,b = G̃ξ
P,n,j,b(t/n,H

ξ
t,b),

with EP (εP,t,n,i,a|Hĝ
t ) = 0 and EP (ξP,t,n,j,b|Hf̂

t ) = 0, where the input sequences Hĝ
t , H

f̂
t were defined

above. The causal representations

ε̃P,t,n,i,a(u) = G̃ε
P,n,i,a(u,Hε

t,a), ξ̃P,t,n,j,b(u) = G̃ξ
P,n,j,b(u,H

ξ
t,b),

are defined at all u ∈ Un, so that we have εP,t,n,i,a = ε̃P,t,n,i,a(t/n), ξP,t,n,j,b = ξ̃P,t,n,j,b(t/n).

G̃ε
P,n,i,a(u, ·) and G̃ξ

P,n,j,b(u, ·) are measurable functions from (Rdη
ε )∞ and (Rdη

ξ )∞, respectively,

to R — where we endow (Rdη
ε )∞ and (Rdη

ξ )∞ with the σ-algebra generated by all finite projec-

tions — so that G̃ε
P,n,i,a(u,Hε

s,a), G̃ξ
P,n,j,b(u,H

ξ
s,b) are well-defined random variables for each s ∈ Z

and (G̃ε
P,n,i,a(u,Hε

s,a))s∈Z, (G̃
ξ
P,n,j,b(u,H

ξ
s,b))s∈Z are stationary ergodic processes.
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As in Section 3.3, we have not defined the input sequences for the error processes separately for each
dimension, because without loss of generality we may define the measurable functions G̃ε

P,n,i,a(u, ·),
G̃ξ

P,n,j,b(u, ·) and inputs ηεt,a, η
ξ
t,b so that each dimension of the error processes has idiosyncratic inputs.

Using the causal representations of the univariate error processes, we have the following causal
representations of the vector-valued error processes

ε̃P,t,n(u) = G̃ε
P,n(u,Hε

t ) = (G̃ε
P,n,i,a(u,Hε

t,a))i∈[dX ],a∈Ai
,

ξ̃P,t,n(u) = G̃ξ
P,n(u,H

ξ
t ) = (G̃ξ

P,n,j,b(u,H
ξ
t,b))j∈[dY ],b∈Bj

,

so that we have εP,t,n = ε̃P,t,n(t/n), ξP,t,n = ξ̃P,t,n(t/n), where Hε
t = (ηεt , η

ε
t−1, . . .), Hξ

t =

(ηξt , η
ξ
t−1, . . .) with ηεt = (ηεt,a)a∈A, η

ξ
t = (ηξt,b)b∈B for each t ∈ Z. Similarly, for eachm = (i, j, a, b) ∈ Dn

the error products can be represented as

R̃P,t,n,m(u) = G̃R
P,n,m(u,HR

t,m) = G̃ε
P,n,i,a(u,Hε

t,a)G̃
ξ
P,n,j,b(u,H

ξ
t,b),

so that we have RP,t,n,m = R̃P,t,n,m(t/n), where HR
t,m = (ηRt,m, ηRt−1,m, . . .) with ηRt,m = (ηεt,a, η

ε
t,b)

⊤ for

each t ∈ Z. Also, we have the following causal representation of the nonstationary RDn -valued process
of all the products of errors

R̃P,n,t(u) = G̃R
P,n(u,HR

t ) = (G̃R
P,n,m(u,HR

t,m))m∈Dn
,

so that we have RP,t,n = R̃P,n,t(t/n), where HR
t = (ηRt , ηRt−1, . . .) and ηRt = (ηεt , η

ξ
t )

⊤ for each t ∈ Z.
We emphasize that for a fixed P ∈ Pn, u ∈ Un, and n ∈ N, we have that G̃R

P,n(u,HR
s ) is a well-defined

random vector for each s ∈ Z and (G̃R
P,n(u,HR

s ))s∈Z is a stationary ergodic RDn-valued process.

4.5 Assumptions on dependence and nonstationarity

We impose assumptions on the rate of decay in temporal dependence and the degree of nonstationarity
of the observed processes and error processes. We emphasize that the assumptions here are strictly
stronger than those in Section 3.4. We impose these stronger assumptions to guarantee that the sieve
time-varying nonlinear regression estimator achieves the convergence rates required by Theorem 3.1.
Note that the assumptions here require that the nonstationary processes evolve “smoothly” in time,
which excludes nonstationary processes with abrupt changes. We do this mainly to simplify the
presentation, and we discuss extensions to nonstationary processes with both smooth and abrupt
changes in Section C.8.

Denote the set of well-defined tuples of observed processes, dimensions, and time-offsets by

W = {(X, i, a) : i ∈ [dX ], a ∈ Ai} ∪ {(Y, j, b) : j ∈ [dY ], b ∈ Bj} ∪ {(Z, k, c) : k ∈ [dZ ], c ∈ Ck},

so that we may conveniently refer to such well-defined combinations by (W, l, d) ∈ W. Also, denote
the set of well-defined tuples of error processes, dimensions, and time-offsets by

E = {(ε, i, a) : i ∈ [dX ], a ∈ Ai} ∪ {(ξ, j, b) : j ∈ [dY ], b ∈ Bj},

so that we may write (e, l, d) ∈ E to refer to any such combination.
Again, we quantify temporal dependence via the functional dependence measure of Wu [Wu05].

Let (η̃Xt , η̃Yt , η̃Zt )t∈Z be an iid copy of (ηXt , ηYt , ηZt )t∈Z. Going forward, the inputs with the tilde are
from (η̃Xt , η̃Yt , η̃Zt )t∈Z. For any tuple (W, l, d) ∈ W corresponding to a well-defined combination of an
observed process, dimension, and time-offset, define

H̃W
t,d,h = (ηWt+d, . . . , η

W
t−h+1+d, η̃

W
t−h+d, η

W
t−h−1+d, . . .)

to be HW
t,d with the input ηWt−h+d replaced with the iid copy η̃Wt−h+d. For example, for i ∈ [dX ], a ∈ Ai,

we have that η̃Xt−h+a is the copy of the input ηXt−h+a in the input sequence HX
t,a used in the causal

representation of Xt,n,i,a. Analogously, for W ∈ {X,Y ,Z} define H̃W
t,h as HW

t with the input ηWt−h

replaced with the iid copy η̃Wt−h as in Section 4.2.
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For any tuple (e, l, d) ∈ E corresponding to a well-defined combination of an error process, dimen-
sion, and time-offset, define

H̃e
t,d,h = (ηet,d, . . . , η

e
t−h+1,d, η̃

e
t−h,d, η

e
t−h−1,d, . . .)

to be He
t,d with the input ηet−h,d replaced with the iid copy η̃et−h,d. Analogously, for e ∈ {ε, ξ} define

H̃e
t,h as He

t with the input ηet−h replaced with the iid copy η̃et−h as in Section 4.4. Also, for the

product of errors define H̃R
t,m,h as HR

t,m with the input ηRt−h,m replaced with the iid copy η̃Rt−h,m for

m = (i, j, a, b) ∈ Dn. Analogously, define H̃R
t,h as HR

t with the input ηRt−h replaced with the iid copy

η̃Rt−h as in Section 4.4. Now, we define the functional dependence measures of the processes.

Definition 4.1 (Functional dependence measures). We define the following measures of temporal
dependence for each n ∈ N, P ∈ Pn, u ∈ Un, t ∈ Tn. First, define the functional dependence measures
of the observed processes G̃W

n,l,d(u,HW
t,d) for each (W, l, d) ∈ W with h ∈ N0, and some q ≥ 1 as

θWP,u,t,n,l,d(h, q) = [EP (|G̃W
n,l,d(u,HW

t,d)− G̃W
n,l,d(u, H̃W

t,d,h)|q)]1/q,

and for the vector-valued process G̃W
n (u,HW

t ) for each W ∈ {X,Y ,Z} with h ∈ N0, and some q ≥ 1,
r ≥ 1 as

θWP,u,t,n(h, q, r) = [EP (||G̃W
n (u,HW

t )− G̃W
n (u, H̃W

t,h)||qr)]1/q.

Second, define the L∞ versions of the functional dependence measures of the error processes
G̃e

P,n,l,d(u,He
t,d) for each (e, l, d) ∈ E with h ∈ N0 as

θe,∞P,u,t,n,l,d(h) = inf{K ≥ 0 : PP (|G̃e
P,n,l,d(u,He

t,d)− G̃e
P,n,l,d(u, H̃e

t,d,h)| > K) = 0},

and for the vector-valued process G̃e
P,n(u,He

t ) for each e ∈ {ε, ξ} with h ∈ N0, and some r ≥ 1 as

θe,∞P,u,t,n(h, r) = inf{K ≥ 0 : PP (||G̃e
P,n(u,He

t )− G̃e
P,n(u, H̃e

t,h)||r > K) = 0}.

Third, define the functional dependence measures of the processes of error products G̃R
P,n,m(u,HR

t,m)
for each m = (i, j, a, b) ∈ Dn with h ∈ N0, and some q ≥ 1 as

θRP,u,t,n,m(h, q) = [EP (|G̃R
P,n,m(u,HR

t,m)− G̃R
P,n,m(u, H̃R

t,m,h)|q)]1/q,

and for the vector-valued process G̃R
P,n(u,HR

t ) with h ∈ N0, and some q ≥ 1, r ≥ 1 as

θRP,u,t,n(h, q, r) = [EP (||G̃R
P,n(u,HR

t )− G̃R
P,n(u, H̃R

t,h)||qr)]1/q.

Next, we introduce an assumption imposing a uniform polynomial decay of the temporal depen-
dence. Note that we will often write the time as 0 when the time of the input sequence does not
matter because of stationarity. For some sequence of collections of distributions (Pn)n∈N, we make the
following assumption.

Assumption 4.5 (Distribution-uniform decay of temporal dependence). Assume that there exist Θ̄ >
0, β̄ > 2, q̄ > 4, such that for all n ∈ N, u ∈ Un, and observed processes (W, l, d) ∈ W, it holds that

sup
P∈Pn

[EP (|G̃W
n,l,d(u,HW

0,d)|q̄)]1/q̄ ≤ Θ̄, sup
P∈Pn

θWP,u,0,n,l,d(h, q̄) ≤ Θ̄ · (h ∨ 1)−β̄ , h ≥ 0.

Also, assume that there exist Θ̄∞ > 0, β̄∞ > 2, such that for all n ∈ N, u ∈ Un, and error processes
(e, l, d) ∈ E, it holds that

sup
P∈Pn

||Ge
P,n,l,d(u,He

0,d)||L∞(P ) ≤ Θ̄∞, sup
P∈Pn

θe,∞P,u,0,n,l,d(h) ≤ Θ̄∞ · (h ∨ 1)−β̄∞
, h ≥ 0.

For additional control in terms of the product of errors alone, also assume that there exist Θ̄R > 0,
β̄R > 3, q̄R > 4, such that for all n ∈ N, u ∈ Un, m = (i, j, a, b) ∈ Dn, it holds that

sup
P∈Pn

[EP (|G̃R
P,n,m(u,HR

0,m)|q̄
R

)]1/q̄
R

≤ Θ̄R, sup
P∈Pn

θRP,u,0,n,m(h, q̄R) ≤ Θ̄R · (h ∨ 1)−β̄R

, h ≥ 0.
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In view of Assumption 4.5, we have the following bounds on the functional dependence measures
of the corresponding vector-valued processes for each n ∈ N, u ∈ Un by Jensen’s inequality. For the
vector-valued process of error products, we have

sup
P∈Pn

[EP (||G̃R
P,n(u,HR

0 )||q̄
R

2 )]1/q̄
R

≤ D
1
2
n Θ̄

R, sup
P∈Pn

θRP,u,0,n(h, q̄
R, 2) ≤ D

1
2
n Θ̄

R · (h ∨ 1)−β̄R

, h ≥ 0.

Also, for each of the vector-valued observed processes W ∈ (X,Y ,Z), we have

sup
P∈Pn

[EP (||G̃W
n (u,HW

0 )||q̄2)]1/q̄ ≤ D
1
2
n Θ̄, sup

P∈Pn

θWP,u,0,n(h, q̄, 2) ≤ D
1
2
n Θ̄ · (h ∨ 1)−β̄ , h ≥ 0.

Lastly, for each of the vector-valued error processes e ∈ (ε, ξ), we have

sup
P∈Pn

∣∣∣∣∣∣||G̃e
P,n(u,He

0)||2
∣∣∣∣∣∣
L∞(P )

≤ D
1
2
n Θ̄

∞, sup
P∈Pn

θe,∞P,u,0,n(h, 2) ≤ D
1
2
n Θ̄

∞ · (h ∨ 1)−β̄∞
, h ≥ 0.

Next, we discuss an additional regularity condition required by the sieve estimator that is analogous
to Lemma 3.1 in Ding and Zhou [DZ21]. Recall the set of basis functions {φℓ2(z)} from Section 4.3.
For each n ∈ N, P ∈ Pn, t ∈ Tn, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj let

w
φ(Z)
t,n = (φℓ2(Zt,n,k,c))k∈[dZ ],c∈Ck,1≤ℓ2≤d̃n

,

w
φ(Z),ε
P,t,n,i,a = (φℓ2(Zt,n,k,c)εP,t,n,i,a)k∈[dZ ],c∈Ck,1≤ℓ2≤d̃n

,

w
φ(Z),ξ
P,t,n,j,b = (φℓ2(Zt,n,k,c)ξP,t,n,j,b)k∈[dZ ],c∈Ck,1≤ℓ2≤d̃n

.

As in Section 3.2 in Ding and Zhou [DZ21], the RdZ d̃n -valued processes w
φ(Z)
t,n , w

φ(Z),ε
P,t,n,i,a, and w

φ(Z),ξ
P,t,n,j,b

all have causal representations

w
φ(Z)
t,n = G̃wφ(Z)

n (t/n,Hwφ(Z)

t ),

w
φ(Z),ε
P,t,n,i,a = G̃wφ(Z),ε

P,n,i,a (t/n,Hwφ(Z),ε

t,a ),

w
φ(Z),ξ
P,t,n,j,b = G̃wφ(Z),ξ

P,n,j,b (t/n,Hwφ(Z),ξ

t,b ),

where

Hwφ(Z)

t = (ηw
φ(Z)

t , ηw
φ(Z)

t−1 , . . .),

Hwφ(Z),ε

t,a = (ηw
φ(Z),ε

t,a , ηw
φ(Z),ε

t−1,a , . . .),

Hwφ(Z),ξ

t,b = (ηw
φ(Z),ξ

t,b , ηw
φ(Z),ξ

t−1,b , . . .),

with ηw
φ(Z)

t = ηZt+cmax
, ηw

φ(Z),ε

t,a = (ηZt+cmax
, ηXt+a)

⊤, and ηw
φ(Z),ξ

t,b = (ηZt+cmax
, ηYt+b)

⊤. Define the func-

tional dependence measures of the vector-valued processes w
φ(Z)
t,n , w

φ(Z),ε
P,t,n,i,a, w

φ(Z),ξ
P,t,n,j,b, by

θ
φ(Z)

P,u,t,n(h, q, 2) = [EP (||G̃
φ(Z)

n (u,H
φ(Z)

t )− G̃
φ(Z)

n (u, H̃
φ(Z)

t,h )||q2)]1/q,

θw
φ(Z),ε

P,u,t,n,i,a(h, q, 2) = [EP (||G̃wφ(Z),ε

P,n,i,a (u,Hwφ(Z),ε

t,a )− G̃wφ(Z),ε

P,n,i,a (u, H̃wφ(Z),ε

t,a,h )||q2)]1/q,

θw
φ(Z),ξ

P,u,t,n,j,b(h, q, 2) = [EP (||G̃wφ(Z),ξ

P,n,j,b (u,Hwφ(Z),ξ

t,b )− G̃wφ(Z),ξ

P,n,j,b (u, H̃wφ(Z),ξ

t,b,h )||q2)]1/q.

Recall Θ̄, Θ̄∞, β̄, β̄∞, and q̄ from Assumption 4.5. Using the same arguments from Lemma 3.1

from Ding and Zhou [DZ21], for all n ∈ N, u ∈ Un, the vector-valued processes w
φ(Z),ε
P,t,n,i,a, w

φ(Z),ξ
P,t,n,j,b

satisfy

sup
P∈Pn

[EP (||G̃wφ(Z),ε

P,n,i,a (u,Hwφ(Z),ε

t,a )||q̃2)]1/q̃ ≤ D
1
2
n Θ̃, sup

P∈Pn

θw
φ(Z),ε

P,u,t,n,i,a(h, q̃, 2) ≤ D
1
2
n Θ̃ · (h ∨ 1)−β̃ ,

sup
P∈Pn

[EP (||G̃wφ(Z),ξ

P,n,j,b (u,Hwφ(Z),ξ

t,b )||q̃2)]1/q̃ ≤ D
1
2
n Θ̃, sup

P∈Pn

θw
φ(Z),ξ

P,u,t,n,j,b(h, q̃, 2) ≤ D
1
2
n Θ̃ · (h ∨ 1)−β̃ ,
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for h ≥ 0, where q̃ = q̄ > 4 with β̃ = min(β̄, β̄∞) > 2 and Θ̃ = 2K1(max(Θ̄∞, Θ̄))2 > 0 where the
constant factor K1 > 0 is due to the basis functions. Similarly, for all n ∈ N, u ∈ Un, the vector-valued

process w
φ(Z)
t,n satisfies

sup
P∈Pn

[EP (||G̃wφ(Z)

n (u,Hwφ(Z)

t )||q̄2)]1/q̄ ≤ D
1
2
n Θ̄K2, sup

P∈Pn

θ
φ(Z)

P,u,t,n(h, q̄, 2) ≤ D
1
2
n Θ̄K2 · (h ∨ 1)−β̄ ,

for h ≥ 0, where the constant factor K2 > 0 is due to the basis functions.
For Theorem 3.1, we only require that the total variation of the causal mechanism of the process

of error products can be bounded distribution-uniformly. However, the sieve estimator requires the
stronger assumption that the causal mechanisms of the observed processes and error processes are
stochastic Lipschitz functions of rescaled time. We impose the following regularity conditions to
control the nonstationarity uniformly over a sequence of collections of distributions (Pn)n∈N.

Assumption 4.6 (Distribution-uniform stochastic Lipschitz condition for nonstationarity). For each
n ∈ N, (W, l, d) ∈ W, (e, l, d) ∈ E, and t ∈ Z, we assume that G̃W

n,l,d(·,HW
t,d) and G̃e

P,n,l,d(·,He
t,d)

are stochastic Lipschitz functions of rescaled time u ∈ Un. Recall Θ̄ > 0, q̄ > 4 from Assumption 4.5.
Assume that there exists a constant L̄ > 0 such that for all n ∈ N, u, v ∈ Un, (W, l, d) ∈ W, (e, l, d) ∈ E,
it holds that

sup
P∈Pn

[EP (|G̃W
n,l,d(u,HW

0,d)− G̃W
n,l,d(v,HW

0,d)|q̄)]1/q̄ ≤ L̄Θ̄|u− v|,

sup
P∈Pn

[EP (|G̃e
P,n,l,d(u,He

0,d)− G̃e
P,n,l,d(v,He

0,d)|q̄)]1/q̄ ≤ L̄Θ̄|u− v|.

In view of Assumption 4.6, there exist L̃R = L̄ > 0, q̃R = q̄ > 4, Θ̃R = 2(max(Θ̄∞, Θ̄))2 such that
for all n ∈ N, u, v ∈ Un, m = (i, j, a, b) ∈ Dn we have

sup
P∈Pn

[EP (|G̃R
P,n,m(u,HR

0,m)− G̃R
P,n,m(v,HR

0,m)|q̃
R

)]1/q̃
R

≤ L̃RΘ̃R|u− v|.

This follows from adding and subtracting cross-terms, the triangle inequality, the distributive property,
Hölder’s inequality, and applying the moment bounds and stochastic Lipschitz conditions for the
individual error processes from Assumptions 4.5 and 4.6. It is easy to verify that Assumption 3.6 is
satisfied under this stronger condition on the nonstationarity.

Also, using the same arguments as Lemma 3.1 from Ding and Zhou [DZ21], the individual dimen-

sions of the vector-valued processes w
φ(Z),ε
P,t,n,i,a, and w

φ(Z),ξ
P,t,n,j,b can be shown to satisfy this stochastic

Lipschitz condition for moment q̄/2 > 2 with Lipschitz constant 2K1L̄(max(Θ̄∞, Θ̄))2 > 0, where the
constant factor K1 > 0 is due to the basis functions. Similarly, the individual dimensions of the vector-

valued process w
φ(Z)
t,n can be shown to satisfy this stochastic Lipschitz condition for moment q̄ > 4

with Lipschitz constant K2L̄Θ̄ > 0, where the constant factor K2 > 0 is due to the basis functions.

4.6 Assumptions on local long-run covariances

To ensure fast convergence rates by the sieve estimator, we require the following assumptions on the
local long-run covariance matrices. Note that these assumptions are not made in Section 3.

Definition 4.2 (Local long-run covariance matrices of error products). For each n ∈ N, P ∈ Pn,

u ∈ Un, define the local long-run covariance matrix Σ̃
R

P,n(u) ∈ RDn×Dn for the RDn-valued stationary

process (G̃R
P,n(u,HR

t ))t∈Z by

Σ̃
R

P,n(u) =
∑
h∈Z

CovP (G̃
R
P,n(u,HR

0 ), G̃R
P,n(u,HR

h )).

By Lemma B.5, the local long-run covariance matrices of w
φ(Z)
t,n , w

φ(Z),ε
P,t,n,i,a, w

φ(Z),ξ
P,t,n,j,b are well-

defined in view of the discussion following Assumption 4.5. Now, we will define the local long-run and
integrated long-run covariance matrices of these processes as in Section 3.2 of Ding and Zhou [DZ21].
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Definition 4.3 (Local long-run and integrated long-run covariance matrices). For each n ∈ N,
P ∈ Pn, u ∈ Un, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj, define the local long-run covariance ma-

trices Σ̃
wφ(Z)

P,n (u), Σ̃
wφ(Z),ε

P,n,i,a (u), Σ̃
wφ(Z),ξ

P,n,j,b (u) ∈ RdZ d̃n×dZ d̃n for the RdZ d̃n-valued stationary processes

(G̃wφ(Z)

n (u,HR
t ))t∈Z, (G̃

wφ(Z),ε

P,n,i,a (u,HR
t ))t∈Z, (G̃

wφ(Z),ξ

P,n,j,b (u,HR
t ))t∈Z, respectively, by

Σ̃
wφ(Z)

P,n (u) =
∑
h∈Z

CovP (G̃
wφ(Z)

n (u,Hwφ(Z)

0 ), G̃wφ(Z)

n (u,Hwφ(Z)

h )),

Σ̃
wφ(Z),ε

P,n,i,a (u) =
∑
h∈Z

CovP (G̃
wφ(Z),ε

P,n,i,a (u,Hwφ(Z),ε

0,a ), G̃wφ(Z),ε

P,n,i,a (u,Hwφ(Z),ε

h,a )),

Σ̃
wφ(Z),ξ

P,n,j,b (u) =
∑
h∈Z

CovP (G̃
wφ(Z),ξ

P,n,j,b (u,Hwφ(Z),ξ

0,b ), G̃wφ(Z),ξ

P,n,j,b (u,Hwφ(Z),ξ

h,b )).

Next, for each n ∈ N, P ∈ Pn, u ∈ Un, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj, define the corresponding

integrated long-run covariance matrices Σ̃
wφ(Z)

P,n , Σ̃
wφ(Z),ε

P,n,i,a , Σ̃
wφ(Z),ξ

P,n,j,b ∈ RdZ c̃nd̃n×dZ c̃nd̃n by

Σ̃
wφ(Z)

P,n =

∫
Un

Σ̃
wφ(Z)

P,n (u)⊗ (ϕ(u)ϕ⊤(u))du,

Σ̃
wφ(Z),ε

P,n,i,a =

∫
Un

Σ̃
wφ(Z),ε

P,n,i,a (u)⊗ (ϕ(u)ϕ⊤(u))du,

Σ̃
wφ(Z),ξ

P,n,j,b =

∫
Un

Σ̃
wφ(Z),ξ

P,n,j,b (u)⊗ (ϕ(u)ϕ⊤(u))du,

where ϕ(u) = (ϕ1(u), . . . , ϕc̃n(u))
⊤.

We require the following regularity assumption due to the sieve estimator, which is analogous to
Assumption 3.2 from Ding and Zhou [DZ21]. Specifically, for some sequence of collections of distri-
butions (Pn)n∈N, we impose a distribution-uniform lower bound on the eigenvalues of the integrated
long-run covariance matrices.

Assumption 4.7 (Eigenvalue condition for integrated long-run covariance matrices). Recall Σ̃
wφ(Z)

P,n ,

Σ̃
wφ(Z),ε

P,n,i,a , Σ̃
wφ(Z),ξ

P,n,j,b from Definition 4.3. Assume that there exists a universal constant κ > 0 such that
for all n ∈ N, u ∈ Un, i ∈ [dX ], a ∈ Ai, j ∈ [dY ], b ∈ Bj, we have

inf
P∈Pn

min(λmin(Σ̃
wφ(Z)

P,n ), λmin(Σ̃
wφ(Z),ε

P,n,i,a ), λmin(Σ̃
wφ(Z),ξ

P,n,j,b )) ≥ κ,

where λmin(·) is the smallest eigenvalue of the given matrix.

Again, we emphasize that the locally stationary framework in this section fits into the more gen-
eral triangular array framework from Section 3. Hence, we can use the same cumulative covariance
estimator Q̂R

t,n from Section 3.5 for the cumulative covariance matrices QR
P,t,n =

∑t
s=T−

n
ΣR

P,s,n, where

ΣR
P,s,n = Σ̃

R

P,n(s/n) denotes the local long-run covariance matrix at time s ∈ Tn.

4.7 Theoretical result for Sieve-dGCM

The main result of this section is that the Sieve-dGCM test — implemented by running Algorithm 1
with the predictions from the sieve estimator — will have uniformly asymptotic Type-I error control
under the previously stated assumptions.

Theorem 4.1. Suppose that Assumptions 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 all hold for the sequence of
collections of distributions (P∗

0,n)n∈N, where P∗
0,n ⊂ PCI

0,n for each n ∈ N. Further, suppose that we use
the sieve time-varying regression estimator from Section 4.3 with the basis functions {ϕℓ1(u)}, {φℓ2(z)}
chosen to be mapped Legendre polynomials, where the numbers of basis functions are chosen to satisfy
c̃n = O(log(Tn)), d̃n = O(log(Tn)). Then the assumptions of Theorem 3.1 hold for (P∗

0,n)n∈N, and the
sieve estimators will achieve the convergence rates required by Theorem 3.1.
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Throughout this section, we have used Legendre polynomials as the basis functions. In the next
section, we investigate the finite sample performance of the Sieve-dGCM test using Legendre basis
functions. We emphasize that the Legendre polynomials in our theoretical analysis and simulations
can easily be substituted with trigonometric polynomials, wavelets, or other Jacobi polynomials.

5 Numerical Simulations

This section is structured as follows. In Section 5.1, we explain how to select the parameters of the
sieve estimator and the cumulative covariance estimator. In Section 5.2, we report the simulation
results. In Section 5.3, we discuss the simulation results. In Section 5.4, we discuss the hardness of
conditional independence testing.

5.1 Parameter selection via subsampling and minimum volatility

To begin, we introduce a novel cross-validation approach based on subsampling which can be used for
selecting the parameters of “global” estimators of time-varying regression functions. The approach we
present here is designed for the case where the global estimator is fit once on all the data. When using
sequential estimation as in Remark 4.1, standard approaches for time series cross-validation can be
used; see Section 5.10 of Hyndman [Hyn18].

Our approach complements the cross-validation procedure suggested in Section 5.1 of Ding and
Zhou [DZ21], which is only for parameter selection in the autoregressive forecasting setting. Also, we
note that Dahlhaus and Richter [DR19; DR23] theoretically investigated cross-validation for locally
stationary processes in the context of selecting bandwidths for kernel smoothing estimators (i.e. a
“local” estimation approach). In contrast, our proposed cross-validation approach is for “global”
estimators, such as the sieve estimator from Section 4.

The main idea of our cross-validation scheme is to create several folds constructed by sampling
the original time series at a lower sampling frequency. Specifically, for some buffer γ ∈ N0 and index
k = 1, . . . , 2(γ + 1), the k-th fold will consist of the subsampled time series

T (k)
n = {T−

n + k − 1 + 2j(γ + 1) : j = 0, 1, . . . , ⌊T
+
n − T−

n − k + 1

2(γ + 1)
⌋}.

For instance, when the buffer γ = 0, we have T (1)
n = {T−

n ,T−
n +2, . . .} and T (2)

n = {T−
n +1,T−

n +3, . . .}.
Similarly, when the buffer γ = 1, we have T (1)

n = {T−
n ,T−

n + 4, . . .}, T (2)
n = {T−

n + 1,T−
n + 5, . . .},

T (3)
n = {T−

n + 2,T−
n + 6, . . .}, and T (4)

n = {T−
n + 3,T−

n + 7, . . .}. The reason we refer to γ as a buffer
will be made clear below.

We describe our cross-validation scheme in the context of a basic grid search procedure for peda-
gogical reasons. For each parameter combination, do the following. For each index k = 1, . . . , γ+1, use

the k-th fold T (k)
n to estimate the entire time-varying regression function (i.e. on a suitably fine grid of

rescaled times and covariate values) using the “global” estimator. Afterwards, calculate the residuals

based on the observations in the (k+γ+1)-th fold T (k+γ+1)
n . By construction, there are γ time points

in between the observations in T (k)
n and T (k+γ+1)

n . Next, reverse the roles of the folds. That is, for
each index k = 1, . . . , γ+1, estimate the entire time-varying regression function (i.e. on a suitably fine

grid) using the (k + γ + 1)-th fold T (k+γ+1)
n , and then calculate the corresponding residuals based on

the observations in the k-th fold T (k)
n . Finally, for each k = 1, . . . , 2(γ+1), calculate the mean squared

error MSE(k) based on the residuals in fold T (k)
n . Select the parameter combination which yields the

lowest average mean squared error

MSE =
1

2(γ + 1)

2(γ+1)∑
k=1

MSE(k).

In practice, γ should be chosen large enough to account for the temporal dependence, but small
enough so that there is enough data to estimate the time-varying regression functions. In our sim-
ulations with Sieve-dGCM, we use the buffer γ = 1 and the grid {2, 4, 6, 8, 10} × {2, 4, 6, 8, 10} for
the numbers of sieve basis functions for time and the covariate values. Note that we allow for the
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regressions of X on Z and Y on Z to have different numbers of basis functions. In future work, we
will study the statistical properties of this cross-validation procedure as the buffer γ = γn grows with
the sample size n using infill asymptotics. For now, this cross-validation approach serves as a practical
technique for parameter selection for generic “global” estimators of time-varying regression functions,
such as the sieve estimator.

Next, we discuss how to select the lag-window size parameter Ln for the covariance estimator with
a version of the minimum volatility method suggested by Luo and Wu [LW23]. First, select H ∈ N
candidate lag-window sizes l1 < l2 < . . . < lH . For each index h = 1, . . . ,H, let

Σ̂t,n,lh =
1

lh

(
t∑

s=t−lh+1

R̂s,n

)⊗2

be the lag-window estimate of the local long-run covariance matrix at time t using the candidate
lag-window size lh ∈ N. Second, calculate the minimum volatility criterion for each j = 1, . . . ,H,

MV(j) = max
t=T−

n +lH ,...,T+
n

se[(Σ̂t,n,lh)
H∧(j+∆)
h=1∨(j−∆)],

where ∆ ∈ N is chosen heuristically to balance robustness and adaptivity, and

se[(Σ̂t,n,lh)
h2

h=h1
] = tr

 1

h2 − h1 + 1

h2∑
h=h1

(
Σ̂t,n,lh − 1

h2 − h1 + 1

h2∑
l=h1

Σ̂t,n,lh

)2
1/2

,

with h1 = 1 ∨ (j −∆) and h2 = H ∧ (j +∆). Third, select the lag-window size L∗
n that corresponds

to the index j∗ which yields the smallest minimum volatility criterion

j∗ = argmin
j=1,...,H

MV(j).

We use the following setup in our simulations. We consider H = ⌊n3/4⌋ candidate lag-windows
with sizes l1 = 1, l2 = 2, . . . , lH = ⌊n3/4⌋. We use ∆ = 12 so that 25 consecutive lag-window sizes are
typically used in the calculation of the minimum volatility criterion MV(j) for each j = 1, . . . ,H.

5.2 Analysis of level and power

We use the Sieve-dGCM test, which consists of running Algorithm 1 based on the predictions from the
sieve time-varying nonlinear regression estimator. We use Legendre polynomials as the basis functions
as in our theoretical analysis in Section 4. The numbers of basis functions for time and the covariate
values were chosen using the cross-validation procedure from Section 5.1. The lag-window parameter
for covariance estimation was selected via the minimum volatility method from Section 5.1. We use
s = 5000 Monte Carlo simulations to approximate the desired quantile of the test statistic.

We compare the dGCM test with the original generalized covariance measure (GCM) test [SP20]
using a generalized additive model, and the residual prediction test (RPT) [SB18; HPM18] using the
Nyström method and a random forest model. We use the implementations from the CondIndTests

R package [HPM18]. We also examine the performance of the dGCM test in the hypothetical sce-
nario in which the time-varying regression functions are perfectly estimated. We refer to this test as
Oracle-dGCM, which consists of running Algorithm 1 using the predictions from the true time-varying
regression functions. Again, we select the lag-window parameter via the minimum volatility method
from Section 5.1 and we use s = 5000 Monte Carlo simulations.

We emphasize that our simulations adhere to the asymptotic framework of locally stationary pro-
cesses as described in Section 4. Within this framework, as n grows we gain more and more observa-
tions of each local structure of the nonstationary process. Standard long-run asymptotics for stationary
processes emerge as a special case of this infill asymptotic framework when all parameter curves and
regression functions are time-invariant. Similarly, the iid setting arises as another special case when
there is neither nonstationarity nor temporal dependence.

We investigate the setting with dX = 1, dY = 1, dZ = 1 and no time-offsets, so that A = {0},
B = {0}, C = {0}, and Tn = [n]. For the rest of this section, we will refer to the processes as
(Xt,n)t∈[n], (Yt,n)t∈[n], and (Zt,n)t∈[n]. We test for the null hypothesis

Xt,n ⊥⊥ Yt,n | Zt,n for all times t ∈ [n],
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versus the alternative hypothesis

Xt,n ⊥̸⊥ Yt,n | Zt,n for all times t ∈ [n],

because we assume that we can restrict the collection of distributions to be those with time-invariant
conditional dependencies. We first generate 100 realizations of the nonstationary nonlinear processes
at sample sizes n ∈ {250, 500, 750}, and then we calculate the empirical rejection rates for each test
using the significance level α = 0.05.

In this setup, we couple the processes (Xt,n)t∈[n] and (Yt,n)t∈[n] by using correlated shocks

(ηεt , η
ξ
t )t∈[n] for the error processes (εt,n, ξt,n)t∈[n]. Let the covariate process be a tvAR(1) process (i.e.

a time-varying autoregressive process with one lag) defined by

Zt,n = θZ(t/n)Zt−1,n + ηZt ,

where the parameter curve θZ : [0, 1] −→ R is given by θZ(u) = 0.35 + 0.2cos(2πu), and the shocks
(ηZt )t∈[n] are sampled iid from a standard normal distribution. Let

Xt,n = fK(Zt,n, t/n) + σε(Zt,n, t/n)εt,n, Yt,n = gK(Zt,n, t/n) + σξ(Zt,n, t/n)ξt,n,

where the functions fK , gK : R× [0, 1] −→ R are defined by

fK(z, u) = (0.5 + 0.25cos(2πu))exp(−z2)sin(2Kz),

gK(z, u) = (0.3 + 0.15sin(πu))exp(−z2)cos(1.5Kz),

with regression complexity parameter K ∈ {1, 2}, and where the functions σε, σξ : R× [0, 1] −→ R are
given by

σε(z, u) = 0.2 + (0.5 + 0.25sin(2πu))

(
exp(−5z)

1 + exp(−5z)

)
,

σξ(z, u) = 0.5 + (0.4 + 0.2cos(2πu))exp(−z2)sin(z).

We use tvAR(1) error processes

εt,n = θε(t/n)εt−1,n + ηεt , ξt,n = θξ(t/n)ξt−1,n + ηξt ,

where the parameter curves θε, θξ : [0, 1] −→ R are given by

θε(u) = 0.4 + 0.2sin(πu), θξ(u) = 0.5 + 0.25sin(2πu).

The shocks (ηεt , η
ξ
t )t∈[n] are sampled iid from a centered bivariate normal distribution with unit vari-

ances and correlation ρ ∈ {0, 0.3, 0.6, 0.9}[
ηεt
ηξt

]
∼ N

([
0
0

]
,

[
1 ρ
ρ 1

])
, t ∈ [n].

The null hypothesis is true when ρ is zero, and the alternative hypothesis is true when it is nonzero.
[Insert simulation results here]
Next, we consider a variant of a setup from Shah and Peters [SP20]. The purpose of this setup

is to ensure that the dGCM test maintains the correct level even when the dynamics are the same
for both (Xt,n)t∈[n] and (Yt,n)t∈[n]. In contrast with the previous setup, the processes (Xt,n)t∈[n] and
(Yt,n)t∈[n] in this setup are coupled due to Xt,n having an additive effect on Yt,n for each time t ∈ [n].

Let the covariate process be a tvAR(1) process defined by

Zt,n = θZ(t/n)Zt−1,n + ηZt ,

where the parameter curve θZ : [0, 1] −→ R is defined by θZ(u) = 0.5 + 0.25cos(πu) and the shocks
(ηZt )t∈[n] are sampled iid from a standard normal distribution. Let

Xt,n = fK(Zt,n, t/n) + σe(Zt,n, t/n)εt,n, Yt,n = fK(Zt,n, t/n) + βXt,n + σe(Zt,n, t/n)ξt,n,
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with effect size β ∈ {0, 1, 2}, where the function fK : R× [0, 1] −→ R is defined by

fK(z, u) = (0.4 + 0.2sin(2πu))exp(−z2)sin(Kz),

with regression complexity parameter K ∈ {1, 2}, and where the function σe : R × [0, 1] −→ R is held
constant σe(u, z) = 0.3. Let the error processes be tvAR(1) processes

εt,n = θe(t/n)εt−1,n + ηεt , ξt,n = θe(t/n)ξt−1,n + ηξt ,

where the parameter curve θe : [0, 1] −→ R is given by θe(u) = 0.45+0.3sin(2πu). The shocks (ηεt )t∈[n],

(ηξt )t∈[n] are sampled iid from a standard normal distribution. The null hypothesis is true when the
effect size β is zero, and the alternative hypothesis is true when it is nonzero.

[Insert simulation results here]

5.3 Discussion of simulation results

All of the conditional independence tests are able to detect conditional dependencies. However, GCM
and RPT fail to hold the level. In contrast, we find that dGCM can hold the level if the sample size is
large enough to reliably estimate the time-varying regression functions. This is not entirely surprising,
as RPT and GCM were developed for the idealized iid setting and do not account for autocorrelation
or nonstationarity. Nevertheless, it is useful to see how these tests perform when relatively mild forms
of nonstationarity and autocorrelation are added to the setups from Shah and Peters [SP20]. We
conclude that the dGCM test shows promise for reliably detecting conditional dependencies among
nonstationary nonlinear time series.

In another manuscript, we plan to exhaustively compare the dGCM test with a large number
of existing conditional independence tests across a diverse range of non-iid settings and challenging
tasks. Examples include detecting time-delayed causal effects, screening out irrelevant forecasting
signals, handling high-dimensional covariates and responses, and exploring more extreme forms of
autocorrelation and nonstationarity. Also, we plan to investigate the performance of the dGCM test
with other time-varying regression estimators.

5.4 No-free-lunch in conditional independence testing

We provide an empirical demonstration of the “no-free-lunch” results from [SP20; BP24] with our
simulations by increasing the complexity of the regression functions while holding the sample size
fixed. When the regression complexity (parametrized by K) is large relative to the sample size n,
we observe a degradation in Type-I error control because the regression functions cannot be reliably
estimated. This phenomena can also be observed in the simulation experiments with the GCM test;
see the discussion in Section 5 of Shah and Peters [SP20]. In light of the no-free-lunch results, we
understand that this is inevitable. No matter how large the sample size, it is impossible to ensure the
correct significance level for every null distribution. Hence, there will always be some null distribution
in which the Type-I error rate exceeds the prespecified significance level.

Crucially, the uniform level guarantee for our test only applies when the assumptions on the se-
quence of collections of distributions are satisfied. In the context of our simulations, this means that
any sequence of distributions parametrized by a sequence (Kn)n∈N in which the regression complexity
parameter Kn grows with the sample size n at some rate will violate Assumption 4.6. Therefore, the
uniform asymptotic Type-I error control guarantee we provide is not applicable. On the other hand,
if we increase the sample size while holding the degree of complexity of the regression functions fixed
(e.g. setting Kn = K = 1.5 for all sample sizes n), then the uniform asymptotic Type-I error control
guarantee is applicable. This demystifies the phenomena of conditional independence tests failing to
control Type-I error and highlights the transparency of uniform level guarantees.

References

[BR23] Sumanta Basu and Suhasini Subba Rao. “Graphical models for nonstationary time series”.
The Annals of Statistics 51.4 (2023), pp. 1453–1483.

31



[Bee21] Carina Beering. “A functional central limit theorem and its bootstrap analogue for lo-
cally stationary processes with application to independence testing”. PhD Dissertation,
Technische Universität Braunschweig. 2021.

[BH95] Yoav Benjamini and Yosef Hochberg. “Controlling the false discovery rate: a practical and
powerful approach to multiple testing”. Journal of the Royal Statistical Society Series B:
Statistical Methodology 57.1 (1995), pp. 289–300.

[BY01] Yoav Benjamini and Daniel Yekutieli. “The control of the false discovery rate in multiple
testing under dependency”. Annals of Statistics 29.4 (2001), pp. 1165–1188.

[BP24] Juraj Bodik and Olivier C. Pasche. “Granger causality in extremes”. arXiv preprint arXiv:
2407.09632. 2024.

[BRT12] Taoufik Bouezmarni, Jeroen V.K. Rombouts, and Abderrahim Taamouti. “Nonparamet-
ric copula-based test for conditional independence with applications to Granger causal-
ity”. Journal of Business and Economic Statistics 30.2 (2012), pp. 275–287.

[Bru22] Guy-Niklas Brunotte. “A test of independence under local stationarity based on the local
characteristic function”. ResearchGate preprint. 2022. doi: 10.13140/RG.2.2.36779.
31523/1.

[Can+18] Emmanuel J. Candés, Yingying Fan, Lucas Janson, and Jinchi Lv. “Panning for gold:
model-X knockoffs for high dimensional controlled variable selection”. Journal of the
Royal Statistical Society Series B: Statistical Methodology 80.3 (2018), pp. 551–577.

[CZK24] Abhinav Chakraborty, Jeffrey Zhang, and Eugene Katsevich. “Doubly robust and
computationally efficient high-dimensional variable selection” (2024). arXiv preprint
arXiv:2409.09512.

[CSW22] Likai Chen, Ekaterina Smetanina, and Wei Biao Wu. “Estimation of nonstationary non-
parametric regression model with multiplicative structure”. The Econometrics Journal
25.1 (2022), pp. 176–214.

[CPH22] Alexander Mangulad Christgau, Lasse Petersen, and Niels Richard Hansen. “Nonpara-
metric conditional local independence testing”. The Annals of Statistics 51.5 (2022),
pp. 2116–2144.

[CZ25] Yan Cui and Zhou Zhou. “Optimal short-term forecast for locally stationary functional
time series”. IEEE Transactions on Information Theory (2025).

[Dah97] Rainer Dahlhaus. “Fitting time series models to nonstationary processes”. The Annals of
Statistics 25.1 (1997), pp. 1–37.

[Dah12] Rainer Dahlhaus. “Locally stationary processes”. Handbook of Statistics 30 (2012),
pp. 351–413.

[DR23] Rainer Dahlhaus and Stefan Richter. “Adaptation for nonparametric estimators of locally
stationary processes”. Econometric Theory 39.6 (2023), pp. 1123–1153.

[DR19] Rainer Dahlhaus and Stefan Richter. “Cross validation for locally stationary processes”.
Annals of Statistics 47.4 (2019), pp. 2145–2173.

[DRW19] Rainer Dahlhaus, Stefan Richter, and Wei Biao Wu. “Towards a general theory for non-
linear locally stationary processes”. Bernoulli 25.2 (2019), pp. 1013–1044.

[Dau80] J. J. Daudin. “Partial association measures and an application to qualitative regression”.
Biometrika 67.3 (1980), pp. 581–590.

[DZ23] Xiucai Ding and Zhou Zhou. “Autoregressive approximations to nonstationary time series
with inference and applications”. The Annals of Statistics 51.3 (2023), pp. 1207–1231.

[DZ25] Xiucai Ding and Zhou Zhou. “On the partial autocorrelation function for locally sta-
tionary time series: characterization, estimation and inference”. Biometrika (2025). To
appear.

[DZ21] Xiucai Ding and Zhou Zhou. “Simultaneous sieve inference for time-inhomogeneous non-
linear time series regression”. arXiv preprint arXiv:2112.08545. 2021.

32

https://doi.org/10.13140/RG.2.2.36779.31523/1
https://doi.org/10.13140/RG.2.2.36779.31523/1


[Don+23] Xinshuai Dong, Haoyue Dai, Yewen Fan, Songyao Jin, Sathyamoorthy Rajendran, and
Kun Zhang. “On the three demons in causality in finance: time resolution, nonstationarity,
and latent factors”. arXiv preprint arXiv:2401.05414. 2023.

[Dor+14] Gary Doran, Krikamol Muandet, Kun Zhang, and Bernhard Schölkopf. “A permutation-
based kernel conditional independence test”. Proceedings of the Thirtieth Conference on
Uncertainty in Artificial Intelligence (2014), pp. 132–141.

[FFX20] Jianqing Fan, Yang Feng, and Lucy Xia. “A projection-based conditional dependence
measure with applications to high-dimensional undirected graphical models”. Journal of
Econometrics 218.1 (2020), pp. 119–139.

[FHG23] Muhammad Hasan Ferdous, Uzma Hasan, and Md Osman Gani. “Cdans: temporal causal
discovery from autocorrelated and non-stationary time series data”. Proceedings of Ma-
chine Learning Research 219 (2023), pp. 186–207.

[FNS15] Seth R. Flaxman, Daniel B. Neill, and Alexander J. Smola. “Gaussian processes for inde-
pendence tests with non-iid data in causal inference”. ACM Transactions on Intelligent
Systems and Technology 7.2 (2015), pp. 1–23.

[Fuk+07] Kenji Fukumizu, Arthur Gretton, Xiaohai Sun, and Bernhard Schölkopf. “Kernel mea-
sures of conditional dependence”. Advances in Neural Information Processing Systems 20
(2007), pp. 489–496.

[Gre+07] Arthur Gretton, Kenji Fukumizu, Choon Teo, Le Song, Bernhard Schölkopf, and Alex
Smola. “A kernel statistical test of independence”. Advances in Neural Information Pro-
cessing Systems 20 (2007).

[HPM18] Christina Heinze-Deml, Jonas Peters, and Nicolai Meinshausen. “Invariant causal predic-
tion for nonlinear models”. Journal of Causal Inference 6.2 (2018), pp. 6887–6909.

[Hua+20] Biwei Huang, Kun Zhang, Jiji Zhang, Joseph Ramsey, Ruben Sanchez-Romero, Clark
Glymour, and Bernhard Schölkopf. “Causal discovery from heterogeneous/nonstationary
data”. Journal of Machine Learning Research 21.89 (2020), pp. 1–53.

[Hua10] Tzee-Ming Huang. “Testing conditional independence using maximal nonlinear condi-
tional correlation”. The Annals of Statistics 38.4 (2010), pp. 2047–2091.

[Hyn18] R. J. Hyndman. Forecasting: principles and practice. OTexts, 2018.

[KKR24] Iden Kalemaj, Shiva Kasiviswanathan, and Aaditya Ramdas. “Differentially private con-
ditional independence testing”. International Conference on Artificial Intelligence and
Statistics 238 (2024), pp. 3700–3708.

[Kim+22] Ilmun Kim, Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. “Local
permutation tests for conditional independence”. The Annals of Statistics 50.6 (2022),
pp. 3388–3414.

[KR24] Jonas Krampe and Suhasini Subba Rao. “Inverse covariance operators of multivariate
nonstationary time series”. Bernoulli 30.2 (2024), pp. 1177–1196.

[Liu+23] Zhaolu Liu, Robert L. Peach, Felix Laumann, Sara Vallejo Mengod, and Mauricio
Barahona. “Kernel-based joint independence tests for multivariate stationary and non-
stationary time series”. Royal Society Open Science 10.11 (2023).

[Lun+24] Anton Rask Lundborg, Ilmun Kim, Rajen D. Shah, and Richard J. Samworth. “The pro-
jected covariance measure for assumption-lean variable significance testing”. The Annals
of Statistics 52.6 (2024), pp. 2851–2878.

[LSP22] Anton Rask Lundborg, Rajen D. Shah, and Jonas Peters. “Conditional independence
testing in Hilbert spaces with applications to functional data analysis”. Journal of the
Royal Statistical Society Series B: Statistical Methodology 84.5 (2022), pp. 1821–1850.

[LW23] Tianpai Luo and Weichi Wu. “Simultaneous inference for monotone and smoothly time
varying functions under complex temporal dynamics”. arXiv preprint arXiv:2310.02177.
2023.

[MS19] Daniel Malinsky and Peter Spirtes. “Learning the structure of a nonstationary vector au-
toregression”. International Conference on Artificial Intelligence and Statistics 89 (2019),
pp. 2986–2994.

33



[Man+24] Georg Manten, Cecilia Casolo, Emilio Ferrucci, Søren Wengel Mogensen, Cristopher Salvi,
and Niki Kilbertus. “Signature kernel conditional independence tests in causal discovery
for stochastic processes”. arXiv preprint arXiv:2402.18477. 2024.

[Mar05] Dimitris Margaritis. “Distribution-free learning of Bayesian network structure in contin-
uous domains”. AAAI 5 (2005), pp. 825–830.

[MS23] Fabian Mies and Ansgar Steland. “Sequential Gaussian approximation for nonstationary
time series in high dimensions”. Bernoulli 29.4 (2023), pp. 3114–3140.

[NBW21] Matey Neykov, Sivaraman Balakrishnan, and Larry Wasserman. “Minimax optimal con-
ditional independence testing”. The Annals of Statistics 49.4 (2021), pp. 2151–2177.

[Pat+09] Hoyer Patrik, Dominik Janzing, Joris M. Mooij, Jonas Peters, and Bernhard Schölkopf.
“Nonlinear causal discovery with additive noise models”. Advances in Neural Information
Processing Systems 21 (2009).

[Pea14] Judea Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

[Pet+14] Jonas Peters, Joris M. Mooij, Dominik Janzing, and Bernhard Schölkopf. “Causal discov-
ery with continuous additive noise models”. Journal of Machine Learning Research 15.58
(2014), pp. 2009–2053.

[Ram14] Joseph D. Ramsey. “A scalable conditional independence test for nonlinear, non-gaussian
data”. arXiv preprint arXiv:1401.5031. 2014.

[Ros61] Murray Rosenblatt. “Independence and dependence”. Proc. 4th Berkeley Symp. on Math.
Statist. and Prob. 2 (1961), pp. 431–443.

[Run18b] Jakob Runge. “Conditional independence testing based on a nearest-neighbor estimator
of conditional mutual information”. International Conference on Artificial Intelligence
and Statistics 84 (2018), pp. 938–947.

[Run+19a] Jakob Runge, Sebastian Bathiany, Erik Bollt, Gustau Camps-Valls, Dim Coumou, Ethan
Deyle, Clark Glymour, Marlene Kretschmer, Miguel D. Mahecha, Jordi Muñoz-Maŕı, Eg-
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A Proofs of Theoretical Results for dGCM and Sieve-dGCM

We will denote the three bias terms by

ŵf ,g
P,t,n = (ŵf,g

P,t,n,m)m∈Dn
= (ŵf

P,t,n,i,aŵ
g
P,t,n,j,b)m∈Dn

,

ŵg,ε
P,t,n = (ŵg,ε

P,t,n,m)m∈Dn
= (ŵg

P,t,n,j,bεP,t,n,i,a)m∈Dn
,

ŵf ,ξ
P,t,n = (ŵf,ξ

P,t,n,m)m∈Dn
= (ŵf

P,t,n,i,aξP,t,n,j,b)m∈Dn
,

where m = (i, j, a, b) ∈ Dn. Also, denote

ŵf ,g
P,n = (ŵf ,g

P,t,n)t∈Tn,L
,

ŵg,ε
P,n = (ŵg,ε

P,t,n)t∈Tn,L
,

ŵf ,ξ
P,n = (ŵf ,ξ

P,t,n)t∈Tn,L
.

Note that when we write oP(·) and OP(·), we will always be doing so with reference to the collection
of distributions P∗

0,n defined in the statement of the theorem.

A.1 Proof of Theorem 3.1

Step 1 (Bias Terms): We decompose the products of residuals into the products of errors and the
three bias terms, and then apply the triangle inequality and subadditivity, which yields

sup
P∈P∗

0,n

PP (Sn,p(R̂n) > q̂1−α+νn + τn)

≤ sup
P∈P∗

0,n

PP (Sn,p(RP,n) > q̂1−α+νn
+

τn
2
)

+ sup
P∈P∗

0,n

PP (Sn,p(ŵ
f ,g
P,n) >

τn
6
)

+ sup
P∈P∗

0,n

PP (Sn,p(ŵ
g,ε
P,n) >

τn
6
)

+ sup
P∈P∗

0,n

PP (Sn,p(ŵ
f ,ξ
P,n) >

τn
6
).

We will handle each of the three bias terms separately.
Step 1.1: Observe that for any δ > 0, we have

sup
P∈P∗

0,n

PP (τ
−1
n Sn,p(ŵ

f ,g
P,n) > δ)

(1)

≤ δ−1τ−1
n T

− 1
2

n,L sup
P∈P∗

0,n

EP

 max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤s

ŵf ,g
P,t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
2


(2)

≤ δ−1τ−1
n T

− 1
2

n,LDn sup
P∈P∗

0,n

max
(i,j,a,b)∈Dn

EP

 ∑
t∈Tn,L

|ŵf
P,t,n,i,a||ŵ

g
P,t,n,j,b|


(3)

≤ δ−1τ−1
n T

1
2

n,LDn sup
P∈P∗

0,n

max
(i,j,a,b)∈Dn

EP

(
|ŵf

P,t,n,i,a|
2
) 1

2 EP

(
|ŵg

P,t,n,j,b|
2
) 1

2

(4)
= o(1),

where the previous lines follow by (1) Markov’s inequality and ℓp-norm inequalities, (2) the triangle
inequality, ℓp-norm inequalities, linearity of expectation, (3) linearity of expectation and the Cauchy-
Schwarz inequality, (4) the convergence rate requirements for the time-varying regression estimators.
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Step 1.2: Observe that for any δ > 0, we have

sup
P∈P∗

0,n

PP (τ
−1
n Sn,p(ŵ

g,ε
P,n) > δ)

(1)

≤ sup
P∈P∗

0,n

PP

τ−2
n max

s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t≤s

ŵg,ε
P,t,n
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∣∣∣∣∣∣
2
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≥ δ2


(2)

≤ δ−2τ−2
n T−1

n,L sup
P∈P∗

0,n

EP

 max
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∑
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ŵg,ε
P,t,n
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2
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(3)

≤ δ−2τ−2
n T−1

n,L(K̄T
1
2

n,LD
1
2
n sup
P∈P∗

0,n

max
t∈Tn,L

max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)
1
2 )2

(4)

≤ δ−2τ−2
n K̄2Dn sup

P∈P∗
0,n

max
t∈Tn,L

max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)

(5)
= o(1),

where the previous lines follow by (1) the assumption about the form of the test statistic and squaring,
(2) Markov’s inequality and linearity of expectation, (3) for some constant K̄ > 0 by the arguments
below, (4) simplifying the expression, and (5) the convergence rate requirements for the time-varying
regression estimator.

The following arguments are to show (3). These arguments are based on the constructions used
in the proof of Theorem 3.2 in Mies and Steland [MS23], which build on the proof techniques from
Theorem 1 in Liu et al. [LXW13]. For each t ∈ Tn,L and h ∈ N0, let

F ŵg,ε

t,h = σ(ηεt , η
ε
t−1 . . . , η

ε
t−h,H

ĝ
t ),

where the input ηεt is from (11) and the input sequence Hĝ
t is defined following Assumption 3.3. For

each n ∈ N, P ∈ P∗
0,n, t ∈ Tn,L, and h ∈ N0 let

Ŝg,ε
P,t,n,h =

∑
k≤t

ŵg,ε
P,k,n,h,

ŵg,ε
P,t,n,h = EP (ŵ

g,ε
P,t,n|F

ŵg,ε

t,h ),

ŵg,ε
P,t,n,−1 = EP (ŵ

g,ε
P,t,n|H

ĝ
t ) = 0,

almost surely, because for each n ∈ N, P ∈ P∗
0,n, (i, j, a, b) ∈ Dn, t ∈ Tn,L we have

EP (ŵ
g
P,t,n,j,bεP,t,n,i,a|Hĝ

t ) = ŵg
P,t,n,j,bEP (εP,t,n,i,a|Hĝ

t ) = 0, (15)

almost surely, by Assumptions 3.3 and 3.4. For each n ∈ N, P ∈ P∗
0,n, t ∈ Tn,L, and h ∈ N0 we have

EP (||ŵg,ε
P,t,n,h||

2
2) < ∞, (16)

by linearity of expectation, the contraction property of conditional expectation, and Assumption 3.3.
For each n ∈ N, P ∈ P∗

0,n, t ∈ Tn,L, and h ∈ N0, by the tower property we have

EP (ŵ
g,ε
P,t,n,h+1|F

ŵg,ε

t,h ) = ŵg,ε
P,t,n,h,

almost surely. Hence, for each n ∈ N, P ∈ P∗
0,n, and t ∈ Tn,L, (ŵg,ε

P,t,n,h)
∞
h=0 is a martingale with

respect to the filtration (F ŵg,ε

t,h )∞h=0. The martingale convergence theorem (see e.g. Theorem 1.5 of

[Pis16]) ensures that for each n ∈ N, P ∈ P∗
0,n, t ∈ Tn,L there exists some random vector w̃g,ε

P,t,n

such that EP ||w̃g,ε
P,t,n − ŵg,ε

P,t,n,h||22 −→ 0 as h −→ ∞. The measurability of Gŵg,ε

P,t,n with respect to the

projection σ-algebra, in view of Assumptions 3.1, 3.2, 3.3, 3.4, ensures that w̃g,ε
P,t,n = ŵg,ε

P,t,n. Thus, for
each t ∈ Tn,L we have

Ŝg,ε
P,t,n =

∑
k≤t
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by telescoping. For each n ∈ N, P ∈ P∗
0,n, and h ∈ N0,

(ŵg,ε

P,T+
n−k,n,h

− ŵg,ε
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)
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n−T−

n −Ln
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(3)
= 0,

almost surely, by (1) Assumption 3.3, (2) the tower property and measurability, and (3) subtraction.
Also, EP (||ŵg,ε

P,T+
n−k,n,h

−ŵg,ε

P,T+
n−k,n,h−1

||22) < ∞ by the triangle inequality, squaring, linearity of expec-

tation, the Cauchy-Schwarz inequality, and the same arguments as (16) (i.e. linearity of expectation,
the contraction property of conditional expectation, and Assumption 3.3).

Next, observe that for each n ∈ N and h ∈ N0, we have
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(EP max
t∈Tn,L
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by (1) adding and subtracting Ŝg,ε

P,T+
n ,n,h

− Ŝg,ε

P,T+
n ,n,h−1

and the triangle inequality, (2) including the

“last” term in this reversed partial sum and rewriting as the corresponding martingale. Continuing on
from (2), we have
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P,t,n,h−1||
2
2

 1
2

,

by (3) Doob’s maximal inequality (see e.g. Theorem 1.9 of [Pis16]), and (4) upper bounding by max of
partial sums and applying Lemma B.6 with the finite constant K/3 > 0. Hence, we have the inequality

sup
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(EP max
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.

Observe that for h = 1, 2, . . ., we have
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ĝ
t )

− EP (εP,t,n,i,a|ηεt , . . . , ηεt−h+1,H
ĝ
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ĝ
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ĝ
t ))|ηεt,a, . . . , ηεt−h,a,H

ĝ
t ]|2),

by (1) rewriting the expression, (2) the causal representation from Assumption 3.3, (3) measurability
of the conditional expectations and the linearity property of conditional expectation, (4) the causal
representation from Assumption 3.4, and (5) replacing ηεt−h,a with the iid copy η̃εt−h,a. Continuing on
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from line (5), we have∑
m=(i,j,a,b)∈Dn

EP (|ŵg
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≤ Dn max
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≤ Dn max
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EP (|ŵg
P,t,n,j,b|

2)(Θ̄∞(h ∨ 1)−β̄∞
)2,

by (6) measurability and linearity of the conditional expectations, and (7) Hölder’s inequality, con-
traction property of conditional expectation, rewriting as the functional dependence measure from
Definition 3.1, and upper bounding by the sum by Dn times the maximum over the dimension/time-
offset combinations in Dn, and (8) the upper bound on the L∞ functional dependence measure from
Assumption 3.5. Similarly, for h = 0, we have

EP ||ŵg,ε
P,t,n,0 − ŵg,ε

P,t,n,−1||
2
2

(1)
= EP ||ŵg,ε

P,t,n,0||
2
2

(2)
=

∑
m=(i,j,a,b)∈Dn

EP (|EP (ŵ
g
P,t,n,j,bεP,t,n,i,a|ηεt ,H

ĝ
t )|2)

(3)
=

∑
m=(i,j,a,b)∈Dn

EP (|ŵg
P,t,n,j,bEP (εP,t,n,i,a|ηεt ,H

ĝ
t )|2)

(4)

≤ Dn max
(i,j,a,b)∈Dn

EP (|ŵg
P,t,n,j,b|

2)(Θ̄∞)2,

because (1) ŵg,ε
P,t,n,−1 = 0, (2) rewriting the expression, (3) Assumption 3.3, and (4) Hölder’s inequality,

contraction property of conditional expectation, applying the upper bound on the L∞ norm from
Assumption 3.5, and upper bounding by the sum by Dn times the maximum over the dimension/time-
offset combinations in Dn. Hence, for all h ∈ N0 we have

EP ||ŵg,ε
P,t,n,h − ŵg,ε

P,t,n,h−1||
2
2 ≤ Dn max

(i,j,a,b)∈Dn

EP (|ŵg
P,t,n,j,b|

2)(Θ̄∞(h ∨ 1)−β̄∞
)2. (19)

Summing over h ∈ N0, we have

sup
P∈P∗

0,n

(EP max
t∈Tn,L

||Ŝg,ε
P,t,n||

2
2)

1
2

(1)

≤
∞∑
h=0

sup
P∈P∗

0,n

(EP max
t∈Tn,L

||Ŝg,ε
P,t,n,h − Ŝg,ε

P,t,n,h−1||
2
2)

1
2

(2)

≤
∞∑
h=0

K sup
P∈P∗

0,n

 ∑
t∈Tn,L

EP ||ŵg,ε
P,t,n,h − ŵg,ε

P,t,n,h−1||
2
2

 1
2

(3)

≤
∞∑
h=0

K sup
P∈P∗

0,n

 ∑
t∈Tn,L

Dn max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)(Θ̄∞(h ∨ 1)−β̄∞
)2

 1
2

,

by (1) the telescoping argument from (17) and the triangle inequality, (2) applying the inequality (18),
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and (3) applying the inequality (19). Continuing on from line (3), we have

∞∑
h=0

K sup
P∈P∗

0,n

 ∑
t∈Tn,L

Dn max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)(Θ̄∞(h ∨ 1)−β̄∞
)2

 1
2

(4)

≤
∞∑
h=0

K sup
P∈P∗

0,n

(Tn,LDn max
t∈Tn,L

max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)(Θ̄∞(h ∨ 1)−β̄∞
)2)

1
2

(5)

≤ Θ̄∞KT
1
2

n,LD
1
2
n sup
P∈P∗

0,n

max
t∈Tn,L

max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)
1
2

∞∑
h=0

(h ∨ 1)−β̄∞

(6)

≤ Θ̄∞K̄∞KT
1
2

n,LD
1
2
n sup
P∈P∗

0,n

max
t∈Tn,L

max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)
1
2

(7)

≤ K̄T
1
2

n,LD
1
2
n sup
P∈P∗

0,n

max
t∈Tn,L

max
j∈[dY ]

max
b∈Bj

EP (|ŵg
P,t,n,j,b|

2)
1
2 ,

by (4) upper bounding each term by the maximum over time t, (5) simplifying the expression, (6)
writing K̄∞ =

∑∞
h=0(h ∨ 1)−β̄∞

< ∞ since β̄∞ > 1 by upper Assumption 3.5, and (7) grouping
together the positive constants into the positive constant K̄.

Step 1.3: The same arguments as Step 1.2 (i.e. exchanging g, ε with f, ξ) can be used to show
that for n ∈ N and δ > 0 we have

sup
P∈P∗

0,n

PP (τ
−1
n Sn,p(ŵ

f ,ξ
P,n) > δ) = o(1).

Step 2 (Strong Gaussian Approximation): Next, we turn to the products of errors (RP,t,n)t∈Tn,L
.

Denote the Gaussian random vectors associated with the strong Gaussian approximation of the product
of errors by R†

t,n ∼ N (0,ΣR
P,t,n) for t ∈ Tn,L. Observe that

sup
P∈P∗

0,n

PP (Sn,p(RP,n) > q̂1−α+νn +
τn
2
)

(1)

≤ sup
P∈P∗

0,n

PP (Sn,p(R
†
n) > q̂1−α+νn +

τn
4
)

+ sup
P∈P∗

0,n

PP

 max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t≤s

(RP,t,n −R†
t,n)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

>
τn
4


(2)

≤ sup
P∈P∗

0,n

PP (Sn,p(R
†
n) > q̂1−α+νn +

τn
4
)

+ 4τ−1
n sup

P∈P∗
0,n

EP

 max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t≤s

(RP,t,n −R†
t,n)

∣∣∣∣∣∣
∣∣∣∣∣∣
2


(3)

≤ sup
P∈P∗

0,n

PP (Sn,p(R
†
n) > q̂1−α+νn +

τn
4
)

+ 4τ−1
n KD

1
2
n Θ̄

R(Γ̄R
n )

1
2

β̄R−2

β̄R−1

√
log(Tn,L)

(
Dn

Tn,L

)ξ(q̄R,β̄R)

,

where (1) follows from the triangle inequality, subadditivity, and the assumption about the form
of the test statistic, (2) follows by Markov’s inequality, and (3) follows by the distribution-uniform
strong Gaussian approximation for high-dimensional nonstationary processes from Lemma B.1. By
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subadditivity and monotonicity, we have

sup
P∈P∗

0,n

PP (Sn,p(R
†
n) > q̂1−α+νn

+
τn
4
)

≤ sup
P∈P∗

0,n

PP (Sn,p(R
†
n) > q1−α)

+ sup
P∈P∗

0,n

PP (q1−α > q̂1−α+νn +
τn
4
)

= α+ sup
P∈P∗

0,n

PP (q1−α > q̂1−α+νn +
τn
4
).

Step 3 (Covariance Approximation): Now, we focus on upper bounding

sup
P∈P∗

0,n

PP (q1−α > q̂1−α+νn +
τn
4
).

Step 3.1: Let us reflect on the implications of Proposition 4.2 of Mies and Steland [MS23], which
is the distribution-pointwise version of Lemma B.4. Proposition 4.2 states that for each n ∈ N and
P ∈ P∗

0,n, for some cumulative covariance Q̄R
P,n, there exist independent Gaussian random vectors

R̄t,n ∼ N (0, Σ̄
R
P,t,n) for t ∈ Tn,L with Σ̄

R
P,t,n = Q̄R

P,t,n − Q̄R
P,t−1,n that are coupled with the Gaussian

random vectors from the strong Gaussian approximation of the product of errors R†
t,n ∼ N (0,ΣR

P,t,n)
for t ∈ Tn,L, such that

EP max
k∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤k

R†
t,n −

∑
t≤k

R̄t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

≤ K log(Tn,L) [
√
Tn,Lδ̄P,nρP,n + ρP,n] = ∆̄P,n,

where

δ̄P,n = max
k∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤k

ΣR
P,t,n −

∑
t≤k

Σ̄
R
P,t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
tr

and
ρP,n = max

t∈Tn,L

||ΣR
P,t,n||tr.

Let R̄n = (R̄t,n)t∈Tn,L
and denote the (1− α) quantile of Sn,p(R̄n) by q̄1−α. For each n ∈ N and

P ∈ P∗
0,n, we have

PP (Sn,p(R
†
n) > q̄1−α+νn

+
τn
4
)

(1)

≤ PP (Sn,p(R̄n) > q̄1−α+νn
)

+ PP

 max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t≤s

(R†
t,n − R̄t,n)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

>
τn
4


(2)
= PP (Sn,p(R̄n) > q̄1−α+νn)

+ PP

 max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t≤s

(R†
t,n − R̄t,n)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

>
τ2n
16


(3)

≤ PP (Sn,p(R̄n) > q̄1−α+νn
)

+ 16τ−2
n T−1

n,LEP

 max
s∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤s

(R†
t,n − R̄t,n)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

2


(4)

≤ (α− νn) + 16τ−2
n ∆̄P,nT

−1
n,L

(5)
= α+

[
16τ−2

n ∆̄P,nT
−1
n,L − νn

]
,
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where the previous lines follow by (1) the triangle inequality, subadditivity, the assumption about the
form of the test statistic, (2) squaring, (3) Markov’s inequality, (4) Proposition 4.2 from Mies and
Steland [MS23], and (5) rearranging terms. We see that if[

16τ−2
n ∆̄P,nT

−1
n,L − νn

]
< 0,

then
PP (Sn,p(R

†
n) > q̄1−α+νn

+
τn
4
) < α,

which implies that q̄1−α+νn
+ τn

4 is greater than q†1−α, the (1− α) quantile of Sn,p(R
†
n). Hence, if

q†1−α ≥ q̄1−α+νn +
τn
4
,

then [
16τ−2

n ∆̄P,nT
−1
n,L − νn

]
≥ 0,

or equivalently

∆̄P,n ≥ 1

16
Tn,Lνnτ

2
n.

Step 3.2: Now, we apply this idea with the cumulative covariance of the residual products Q̂R
n .

By the implication stated at the end of Step 3.1 and monotonicity, we have

sup
P∈P∗

0,n

PP (q1−α > q̂1−α+νn +
τn
4
)

≤ sup
P∈P∗

0,n

PP (∆̂P,n ≥ 1

16
Tn,Lνnτ

2
n),

where we have replaced ∆̄P,n, δ̄P,n with ∆̂P,n, δ̂P,n which are defined by

∆̂P,n = K log(Tn,L) [

√
Tn,Lδ̂P,nρP,n + ρP,n],

δ̂P,n = max
k∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤k

ΣR
P,t,n − Q̂R

k,n

∣∣∣∣∣∣
∣∣∣∣∣∣
tr

,

and ρP,n is defined in the same way as

ρP,n = max
t∈Tn,L

||ΣR
P,t,n||tr.

Thus, if we can find φn such that ∆̂P,n = OP(φn) and if we select the offsets so that νnτ
2
n ≫ T−1

n,Lφn,

or equivalently νn ≫ τ−2
n T−1

n,Lφn, then we will have

sup
P∈P∗

0,n

PP (∆̂P,n ≥ 1

16
Tn,Lνnτ

2
n) −→ 0.

By Lemma B.5 and Assumption 3.5, we have

sup
P∈P∗

0,n

ρP,n ≤ KρDn(Θ̄
R)2,

for some constant Kρ > 0, so we obtain ∆̂P,n = OP (φn) with

φn = log(Tn,L)Dn

[
T

1
2

n,LD
− 1

2
n δ̂

1
2

P,n + 1
]
.

Plugging φn into the offset condition νn ≫ τ−2
n T−1

n,Lφn that we wish to satisfy, if we have

νn ≫ log(Tn,L)Dn(τ
−2
n (T

− 1
2

n,LD
− 1

2
n δ̂

1
2

P,n + T−1
n,L)),
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then

sup
P∈P∗

0,n

PP (∆̂P,n ≥ 1

16
Tn,Lνnτ

2
n) −→ 0.

Step 3.3: It remains to analyze δ̂P,n. By the triangle inequality, we have

δ̂P,n = max
k∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤k

ΣR
P,t,n − Q̂R

k,n

∣∣∣∣∣∣
∣∣∣∣∣∣
tr

≤ max
k∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤k

ΣR
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∣∣∣∣∣∣
∣∣∣∣∣∣
tr

+ max
k∈Tn,L

||Q̂R
k,n −QR

P,k,n||tr.

By Lemma B.3, Assumption 3.5, and Assumption 3.6, the covariance estimation error can be bounded
as

sup
P∈P∗

0,n

EP

 max
k∈Tn,L

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
t≤k
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≤ K(Θ̄R)2Dn(Γ̄

R
nL

1
2
n + T

1
2

n,LD
1
2
nL

1
2
n + Tn,LL

−1
n + Tn,LL

2−β̄R

n )

= O(rδn,1),

where
rδn,1 = Dn(Γ̄

R
nL

1
2
n + T

1
2

n,LD
1
2
nL

1
2
n + Tn,LL

−1
n + Tn,LL

2−β̄R

n ).

Next, we must handle the prediction errors due using the residual products instead of the error prod-
ucts. For any ϵ > 0, we have

sup
P∈P∗

0,n

EP ( max
k∈Tn,L

||Q̂R
k,n −QR

P,k,n||tr ∧ ϵ)

(1)
= sup
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(2)

≤ 1

Ln
sup
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−
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(3)

≤ 2

Ln
sup
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0,n
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  ∑
r∈Tn,L

∣∣∣∣∣
∣∣∣∣∣

r∑
s=r−Ln+1

(
R̂s,n −RP,s,n
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2

2

 ∧ ϵ

 ,

where (1) is from the definitions of QR
P,k,n, Q̂

R
k,n, (2) is from the triangle inequality, and (3) is from

the following outer product inequality for vectors v̂, v ∈ Rd

||v̂v̂⊤ − vv⊤||tr
(1)
= ||(v̂ − v)v⊤ + v(v̂ − v)⊤ + (v̂ − v)(v̂ − v)⊤||tr
(2)

≤ 2||(v̂ − v)v⊤||tr + ||(v̂ − v)(v̂ − v)⊤||tr
(3)
= 2||v̂ − v||2||v||2 + ||v̂ − v||22,
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where (1) follows from adding and subtracting terms, (2) follows from the triangle inequality, and (3)
follows by the properties of outer products and the definition of the trace norm. For each r ∈ Tn,L, we
have the following decomposition into the three bias terms from Step 1 by the triangle inequality∣∣∣∣∣

∣∣∣∣∣
r∑

s=r−Ln+1

(
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2

.

Observe that for any δ > 0 and any r ∈ Tn,L, we have

sup
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= o(1),

using the same arguments as Step 1.1 replacing Tn,L with Ln, and noting that Dn = O(T
1
6
n ) which

corresponds to a lag-window size of Ln = O(T
1

3−δ′
n ) for any δ′ > 0. Next, for any δ > 0 and any

r ∈ Tn,L, we have
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ŵg,ε
P,s,n(Zs,n)

∣∣∣∣∣
∣∣∣∣∣
2

2

> δ2LnD
−4
n τ14n


≤ δ−2L−1

n D4
nτ

−14
n sup

P∈P∗
0,n

EP

∣∣∣∣∣
∣∣∣∣∣

r∑
s=r−Ln+1
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= o(1),

for some K̄ > 0 using the same arguments as Step 1.2 replacing Tn,L with Ln. The same arguments
as Step 1.2 (i.e. exchanging g, ε with f, ξ) can be used to show that∣∣∣∣∣
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ŵf ,ξ
P,s,n(Zs,n)

∣∣∣∣∣
∣∣∣∣∣
2

= oP(L
1
2
nD

−2
n τ7n).

Hence, for any r ∈ Tn,L we have∣∣∣∣∣
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By Lemma B.2, we have for all r ∈ Tn,L that

sup
P∈P∗

0,n

PP

∣∣∣∣∣
∣∣∣∣∣

r∑
s=r−Ln+1

RP,s,n

∣∣∣∣∣
∣∣∣∣∣
2

> L
1
2
nD

1
2
n ϵ


= sup

P∈P∗
0,n

PP

∣∣∣∣∣
∣∣∣∣∣

r∑
s=r−Ln+1

RP,s,n

∣∣∣∣∣
∣∣∣∣∣
2

2

> LnDnϵ
2


≤ L−1

n D−1
n ϵ−2 sup

P∈P∗
0,n

EP

∣∣∣∣∣
∣∣∣∣∣

r∑
s=r−Ln+1

RP,s,n

∣∣∣∣∣
∣∣∣∣∣
2

2


≤ L−1

n D−1
n ϵ−2(2L

1
2
nD

1
2
n Θ̄

RK

∞∑
h=1

h−β̄R

)2

= O(1),

where
∑∞

h=1 h
−β̄R

< ∞ since β̄R > 1 by Assumption 3.5. Putting it all together, by Markov’s
inequality, bounded convergence (Lemma B.7), and noting that the previous statements hold for all
times in Tn,L, we have

max
k∈Tn,L

||Q̂R
k,n −QR

P,k,n||tr = OP(r
δ
n,2),

where
rδn,2 = Tn,Lτ

7
nD

− 3
2

n + Tn,LD
−4
n τ14n .

Next, recall the offset condition

νn ≫ log(Tn,L)Dn(τ
−2
n (T

− 1
2

n,LD
− 1

2
n δ̂

1
2

P,n + T−1
n,L)),

where
δ̂P,n = OP(r

δ
n,1 + rδn,2),

and

rδn,1 = Dn(Γ̄
R
nL

1
2
n + T

1
2

n,LD
1
2
nL

1
2
n + Tn,LL

−1
n + Tn,LL

2−β̄R

n ),

rδn,2 = Tn,Lτ
7
nD

− 3
2

n + Tn,LD
−4
n τ14n .

Observe that

T
− 1

2

n,LD
− 1

2
n (rδn,1)

1
2 + T−1

n,L

≤ T
− 1

2

n,LD
− 1

2
n (D

1
2
n ((Γ̄

R
n )

1
2L

1
4
n + T

1
4

n,LD
1
4
nL

1
4
n + T

1
2

n,LL
− 1

2
n + T

1
2

n,LL
1− β̄R

2
n )) + T−1

n,L

= T
− 1

2

n,L(Γ̄
R
n )

1
2L

1
4
n + T

− 1
4

n,LD
1
4
nL

1
4
n + L

− 1
2

n + L
1− β̄R

2
n + T−1

n,L

= φn,1,

which comes from the covariance estimation error. Also, we have

T
− 1

2

n,LD
− 1

2
n (rδn,2)

1
2

≤ T
− 1

2

n,LD
− 1

2
n (T

1
2

n,Lτ
7
2
n D

− 3
4

n + T
1
2

n,Lτ
7
nD

−2
n )

= τ
7
2
n D

− 5
4

n + τ7nD
− 5

2
n

= φn,2,

which comes from the prediction errors since we use the residual products instead of the error products.
The assumption on the offset condition (13) implies that

νn ≫ log(Tn,L)Dn

(
τ−2
n (φn,1 + φn,2)

)
,
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and therefore

sup
P∈P∗

0,n

PP (∆̂P,n ≥ 1

16
Tn,Lνnτ

2
n) −→ 0.

Combining the results from Step 1, Step 2, and Step 3, we obtain the final result

lim sup
n−→∞

sup
P∈P∗

0,n

PP (Sn,p(R̂n) > q̂1−α+νn
+ τn) ≤ α.

A.2 Proof of Theorem 4.1

It suffices to establish the following two points. First, that the assumptions of Theorem 4.1 imply
those of Theorem 3.1. Second, that the sieve time-varying regression estimators, under the setup of
Theorem 4.1, satisfy the convergence rate requirements of Theorem 3.1.

By using the following notation, we see that Assumption 4.1 implies Assumption 3.1 and Assump-
tion 4.4 implies Assumption 3.4. Note that the causal representations for the observed processes and
error processes from Assumptions 4.1 and 4.4 are defined for all rescaled times Un, and therefore for
all {t/n}t∈Tn

⊂ Un in particular. For a generic high-dimensional locally stationary observed process
W ∈ {X,Y, Z} and any time t, sample size n, dimension l, and time-offset d, we write

GW
t,n(·) = G̃W

n (t/n, ·), GW
t,n,l(·) = G̃W

n,l(t/n, ·), GW
t,n,l,d(·) = G̃W

n,l,d(t/n, ·),

to respectively denote the causal representations of all dimensions of the process W , dimension l of
the process W , and dimension l of the process W with time-offset d. For a generic high-dimensional
locally stationary error process e ∈ {ε, ξ} and any distribution P , time t, sample size n, dimension l,
and time-offset d, we denote

Ge
P,t,n(·) = G̃e

P,n(t/n, ·), Ge
P,t,n,l(·) = G̃e

P,n,l(t/n, ·), Ge
P,t,n,l,d(·) = G̃e

P,n,l,d(t/n, ·),

to respectively denote the causal representations of all dimensions of the error process e, dimension l of
the error process e, and dimension l of the error process e with time-offset d. The causal representations
of the error products are defined similarly. Using this notation, we see that Assumption 4.5 implies
Assumption 3.5 and Assumption 4.6 implies Assumption 3.6. Specifically, Assumption 3.6 is satisfied

with Γ̄R
n = D

1
2
n by using linearity of expectation and directly applying the stochastic Lipschitz condition

for the product of errors from the discussion below Assumption 4.6 to each term in the sum.
It remains to show that Assumptions 3.2 and 3.3 are implied. To see this, let us consider the

following notation. For any distribution P , time t, sample size n, dimensions i, j, and time-offsets a,
b, we write

fP,t,n,i,a(·) = fP,n,i,a(t/n, ·), f̂t,n,i,a(·) = f̂t,n,i,a(t/n, ·),
gP,t,n,j,b(·) = gP,n,j,b(t/n, ·), ĝt,n,j,b(·) = ĝt,n,j,b(t/n, ·),

to denote the time-varying regression functions and the corresponding sieve estimators from Section 4.3
using the notation of Section 2.3. For all times t ∈ Tn, the algorithms used to construct the sieve
estimators from Section 4.3 for rescaled time t/n ∈ Un are Borel measurable functions of the datasets

Df̂
t,n,i,a and Dĝ

t,n,j,b. The measurability of the causal mechanisms of the observed processes from

Assumption 4.1 ensures that these sieve estimators have the causal representations GAf̂

t,n,i,a(HDf̂

t,a ) and

GAĝ

t,n,j,b(HDĝ

t,b ) from Assumption 3.2.

Further, note that the sieve estimators are Borel measurable functions from RdZ to R. The mea-
surability of the causal mechanisms of the covariate processes from Assumption 4.1 ensures that the

sieve estimator’s predictions have the causal representations Gf̂
t,n,i,a(H

f̂
t,a) and Gĝ

t,n,j,b(H
ĝ
t,b) from As-

sumption 3.3. Similarly, note that the Borel measurability of the conditional expectations fP,t,n,i,a

and gP,t,n,j,b ensures that the sieve estimator’s prediction errors are Borel measurable functions from
RdZ to R. Again, by the measurability of the causal mechanisms of the covariate processes from

Assumption 4.1, the prediction errors are ensured to have the causal representations Gŵf

P,t,n,i,a(H
f̂
t,a)
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and Gŵg

P,t,n,j,b(H
ĝ
t,b) from Assumption 3.3. In view of the boundedness of the sieve estimator’s predic-

tions by construction, the regularity conditions for the time-varying partial response functions from
Assumption 4.2, and the additive form of the time-varying regression functions from Assumption 4.2,
there exists some q ≥ 2 such that for all n ∈ N, t ∈ Tn, and (i, j, a, b) ∈ Dn, the prediction errors
satisfy

sup
P∈P∗

0,n

EP (|ŵf
P,t,n,i,a|

q) < ∞, sup
P∈P∗

0,n

EP (|ŵg
P,t,n,j,b|

q) < ∞.

Hence, the sieve estimator’s predictions and prediction errors meet all the conditions required by
Assumption 3.3.

The distribution-uniform assumptions of Theorem 4.1 imply that the distribution-pointwise as-
sumptions of Theorem 3.2 in Ding and Zhou [DZ21] hold for each distribution in the collection.
Specifically, for each n ∈ N and P ∈ P∗

0,n, Assumption 4.2 implies the additive form of the time-
varying regression functions in [DZ21], Assumptions 4.1, 4.4, 4.6 imply Assumption 2.1 in [DZ21],
Assumption 4.5 implies Assumption 2.2 in [DZ21], Assumption 4.3 implies Assumption 3.1 in [DZ21],
and Assumption 4.7 implies Assumption 3.2 in [DZ21]. Next, we consider the additional regularity
condition required by Theorem 3.2 in Ding and Zhou [DZ21] involving the rate of decay in temporal
dependence and the rate of growth of the largest sup-norm of the basis functions for time.

Recall the numbers of observations T f̂
t,n,i,a, T

ĝ
t,n,j,b in the datasetsDf̂

t,n,i,a, D
ĝ
t,n,j,b used to construct

the sieve estimators f̂t,n,i,a(t/n, ·), ĝt,n,j,b(t/n, ·) of the time-varying regression functions at rescaled

time t/n ∈ Un. Also, recall the numbers of basis functions c̃n, d̃n from Section 4.3. As previously
noted in Section 4.3, we simplified the notation for the numbers of basis functions {ϕℓ1(u)}, {φℓ2(z)}
for the estimators f̂t,n,i,a,k,c(t/n, ·) and ĝt,n,j,b,k,c(t/n, ·) of the time-varying partial response functions

at rescaled time t/n ∈ Un from c̃f̂t,n,i,a,k,c, d̃
f̂
t,n,i,a,k,c and c̃ĝt,n,j,b,k,c, d̃

ĝ
t,n,j,b,k,c to c̃n, d̃n. We will now

require the full notation for the numbers of basis functions.
For the convergence rate guarantees from Theorem 3.2 in Ding and Zhou [DZ21] to be applicable

in our setting, we must have

c̃f̂t,n,i,a,k,cd̃
f̂
t,n,i,a,k,c

 1√
T f̂
t,n,i,a

+
(T f̂

t,n,i,a)
2

min(β̄,β̄∞)+1

T f̂
t,n,i,a

 sup
ℓ1∈[c̃f̂t,n,i,a,k,c]

sup
u∈Un

|ϕℓ1(u)|2 = o(1),

c̃ĝt,n,j,b,k,cd̃
ĝ
t,n,j,b,k,c

 1√
T ĝ
t,n,j,b

+
(T ĝ

t,n,j,b)
2

min(β̄,β̄∞)+1

T ĝ
t,n,j,b

 sup
ℓ1∈[c̃ĝt,n,j,b,k,c]

sup
u∈Un

|ϕℓ1(u)|2 = o(1),

for each time t ∈ Tn and combination of dimensions i ∈ [dX ], j ∈ [dY ], k ∈ [dZ ] and time-offsets
a ∈ Ai, b ∈ Bj , c ∈ Ck. This condition is satisfied for the following reasons. First, we have

sup
ℓ1∈[c̃f̂t,n,i,a,k,c]

sup
u∈Un

|ϕℓ1(u)|2 ≲ (c̃f̂t,n,i,a,k,c)
2, sup

ℓ1∈[c̃ĝt,n,j,b,k,c]

sup
u∈Un

|ϕℓ1(u)|2 ≲ (c̃ĝt,n,j,b,k,c)
2,

because the basis functions are chosen to be mapped Legendre polynomials; see Appendix C in Ding
and Zhou [DZ21] and Section 3 in Belloni et al. [Bel+15]. For more information about sieve estimators
and other basis functions, see [New97; Hua98; Che07; DZ20; DZ25]. Second, because we have chosen
the numbers of basis functions to be O(log(Tn)) in the setup of Theorem 4.1. Third, because the

constants β̄, β̄∞ from Assumption 4.5 are both greater than 2. Fourth, because T f̂
t,n,i,a = o(Tn)

and T ĝ
t,n,j,b = o(Tn) regardless of whether the sieve estimators are fit once based on all the data or

sequentially as in Remark 4.1. To be clear, this is due to the infill asymptotic framework of locally
stationary processes, so that more and more observations are available for each local structure as n
grows.

Therefore, the main inequality in the proof of Theorem 3.2 in [DZ21] holds for each P ∈ P∗
0,n

and n ∈ N because all of the theorem’s assumptions are satisfied under the stronger assumptions of
Theorem 4.1. Moreover, for each n ∈ N, the supremum over P ∈ P∗

0,n of the final upper bound for
the main inequality in the proof of Theorem 3.2 in [DZ21] is finite under the distribution-uniform
assumptions of Theorem 4.1. Thus, by basic properties of the supremum, the main inequality in the
proof of Theorem 3.2 in [DZ21] holds with a supremum over P ∈ P∗

0,n for each n ∈ N. In view of the
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notational changes described in Remark 3.2 in [DZ21], the same steps in the proof of Theorem 3.2 in
[DZ21] imply that this distribution-uniform inequality also holds in the general regression setting with
time-offsets. We do not repeat the proof of Theorem 3.2 in [DZ21] here, as the only changes are in
the notation. Putting it all together, the prediction errors of the sieve estimators with the setup of
Theorem 4.1 satisfy

sup
P∈P∗

0,n

max
i∈[dX ],a∈Ai

max
t∈Tn

EP

(∣∣∣ŵf
P,t,n,i,a

∣∣∣2) 1
2

= o(T
− 1

2+δ
n log3(Tn)),

sup
P∈P∗

0,n

max
j∈[dY ],b∈Bj

max
t∈Tn

EP

(∣∣∣ŵg
P,t,n,j,b

∣∣∣2) 1
2

= o(T
− 1

2+δ
n log3(Tn)),

for any δ > 0. Since Dn = O(T
1
6
n ) and τn = o(log−(1+δ′)(Tn)) for some δ′ > 0, the convergence rates

required by Theorem 3.1 are achieved by the sieve estimators with the setup of Theorem 4.1.

B Distribution-Uniform Theory

In this section, we state distribution-uniform versions of the results from Mies and Steland [MS23]. All
of the results in this section can be applied to general triangular array frameworks for high-dimensional
nonstationary nonlinear processes, such as locally stationary processes.

B.1 Distribution-uniform strong Gaussian approximation

To begin, let us introduce the setting rigorously. Let Ω be a sample space, B the Borel sigma-algebra,
and (Ω,B) a measurable space. For fixed n ∈ N, let (Ω,B) be equipped with a family of probability
measures (PP )P∈Pn

so that the distribution of the high-dimensional stochastic system

(Gt,n(Hs))t∈[n],s∈Z,

or, in the locally stationary setting
(G̃n(u,Hs))u∈[0,1],s∈Z,

under PP is P ∈ Pn. Here Ht = (ηt, ηt−1, . . .), where (ηt)t∈Z is a sequence of iid random vectors with
dimension dη = dηn, and Gt,n : (Rdη

)∞ −→ Rdn is a measurable function — where we endow (Rdη

)∞

with the σ-algebra generated by all finite projections. For each t ∈ [n], Gt,n(Hs) is a well-defined
high-dimensional random vector for every s ∈ Z, and (Gt,n(Hs))s∈Z is a high-dimensional stationary
ergodic process.

For each n ∈ N, write the Rdn-valued process of interest as (Wt,n)t∈[n]. We assume that for each
n ∈ N and t ∈ [n], the random vector Wt,n has a causal representation; that is, it can be represented
as a measurable function of these iid random vectors

Wt,n = Gt,n(Ht).

Similarly, for the causal representations in the locally stationary setting, the measurable function
G̃n(u, ·) : (Rdη

)∞ −→ Rdn is defined for each rescaled time u ∈ [0, 1], and we assume that

Wt,n = G̃n(t/n,Ht).

We can use the results in this section for locally stationary processes by writing

Gt,n(Ht) = G̃n(t/n,Ht).

The family of probability measures (PP )P∈Pn
is defined with respect to the same measurable space

(Ω,B), but need not have the same dominating measure. Denote a family of probability spaces by
(Ω,B,PP )P∈Pn . When we say that the process (Wt,n)t∈[n] is defined on the collection of probability
spaces (Ω,B,PP )P∈Pn

for some n ∈ N, we mean that (Wt,n)t∈[n] is defined on the probability space
(Ω,B,PP ) for each P ∈ Pn.
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Note that the causal representations in this paper use sequences of iid random vectors, whereas the
causal representations in Mies and Steland [MS23] use sequences of iid Unif[0, 1] random variables. The
same arguments used in Mies and Steland [MS23] can be applied when using our formulation of the
causal representations with iid random vectors. The only reason we write the causal representations
in this way is for the sake of clarity.

In fact, standard results in probability theory imply that the causal representations based on mea-
surable functions of sequences of iid Unif[0, 1] random variables as in Mies and Steland [MS23] are
already sufficiently general. For example, see Kallenberg [Kal21] Lemma 4.21, Lemma 4.22, and the
surrounding discussion. More specifically, the causal representations with sequences of iid Unif[0, 1]
random variables can express the causal representations with sequences of random vectors by includ-
ing compositions with additional measurable functions for (1) replicating each of the iid Unif[0, 1]
random variables, and (2) inverse sampling via products of conditional distributions; see Section 2.5
of Rubinstein and Kroese [RK16] on random vector generation.

Next, we define our measure of temporal dependence for the process. For the following definition,
let (η̃t)t∈Z be an iid copy of (ηt)t∈Z and denote

H̃t,j = (ηt, . . . , ηj+1, η̃t−j , ηt−j−1, . . .),

to be Ht with the j-th input in the past ηt−j replaced with the iid copy η̃t−j .

Definition B.1 (Functional dependence measure). For n ∈ N, P ∈ Pn, t ∈ Tn, define the functional
dependence measure of Wt,n = Gt,n(Ht) as

θP,t,n(j, q, r) = (EP ||Gt,n(Ht)−Gt,n(H̃t,j)||qr)
1
q ,

with h ∈ N0, q ≥ 1, r ≥ 1.

We state the following distribution-uniform assumptions about the temporal dependence and non-
stationarity of the process for some collections of distributions Pn for some n ∈ N. Note that we write
the time of the input sequence as 0 when it does not matter due to stationarity.

Assumption B.1 (Distribution-uniform decay of temporal dependence). We assume that there exist
β > 0, q ≥ 2 and a constant Θn > 0, such that for all times t ∈ [n] it holds

sup
P∈Pn

θP,t,n(j, q, r) ≤ Θn · (j ∨ 1)−β ,

for j ≥ 0, and that
sup

P∈Pn

(EP ||Gt,n(H0)||q2)1/q ≤ Θn.

Assumption B.2 (Distribution-uniform total variation condition for nonstationarity). Recall Θn from
Assumption B.1. Assume that there exists some Γn ≥ 1 such that

sup
P∈Pn

(
n∑

t=2

(EP ||Gt,n(H0)−Gt−1,n(H0)||22)
1
2

)
≤ Γn ·Θn.

Note that the assumptions regarding the temporal dependence and nonstationarity of the process of
error products, as stated in Section 3.4, ensure that both Assumptions B.1 and B.2 hold for each n ∈ N.
Furthermore, since the assumptions in Section 4.5 are strictly stronger than those in Section 3.4, the
results from this section can be applied to the process of error products in both Sections 3 and 4.

Define the two rates

χ(q, β) =

{
q−2
6q−4 , β ≥ 3

2 ,
(β−1)(q−2)
q(4β−3)−2 , β ∈ (1, 3

2 ),

and

ξ(q, β) =


q−2
6q−4 , β ≥ 3,
(β−2)(q−2)
(4β−6)q−4 ,

3+ 2
q

1+ 2
q

< β < 3,

1
2 − 1

β , 2 < β ≤ 3+ 2
q

1+ 2
q

,
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which will appear in the results in this section. In general, the Gaussian approximation allows the

dimensions to grow as dn = O(n
1−δ

1+ 1
2ξ(q,β) ) for some δ > 0. In the limiting case when β ≥ 3 and q −→ ∞,

this corresponds to dn = O(n
1
4−δ′) for some δ′ > 0.

Let us briefly recall some notation used in the main text. Recall β̄R > 3, q̄R > 4 from Assump-
tion 3.5, as well as the number of times Tn and the number of dimension/time-offset combinations Dn

from Section 2.1. For the dGCM test, we allow Dn = O(T
r(q̄R,β̄R)
n ) where

r(q̄R, β̄R) = min

(
1− δ

1 + 1
2ξ(q̄R,β̄R)

,
1

6

)
, (20)

for some δ > 0. The limiting factor that leads to this requirement is not from the strong Gaussian
approximation, but rather to ensure that the convergence rate requirements can be achieved by the
time-varying nonparametric regression estimators.

The following result is a distribution-uniform version of the strong Gaussian approximation from
Theorem 3.1 in Mies and Steland [MS23].

Lemma B.1. For some sample size n ∈ N and collection of distributions Pn for the stochastic system
(Gt,n(Hs))t∈[n],s∈Z, suppose that Assumption B.1 is satisfied for Pn with some q > 2, β > 1 and

constant Θn > 0. Let the Rdn-valued process (Wt,n)t∈[n] be defined on the collection of probability
spaces (Ω,B,PP )P∈Pn

so that Wt,n = Gt,n(Ht) with EP (Wt,n) = 0 for each time t ∈ [n] and distribution
P ∈ Pn. Also, suppose the dimension dn < cn for some constant c > 0. Then, on a potentially enriched
collection of probability spaces (Ω′,B′,P′

P )P∈Pn , there exist random vectors (W ′
t,n)t∈[n] with the same

distribution as (Wt,n)t∈[n] for each P ∈ Pn, and independent Gaussian random vectors (V ′
t,n)t∈[n] with

EP (V
′
t,n) = 0 for each t ∈ [n], P ∈ Pn, such that

sup
P∈Pn

EP max
k≤n

∣∣∣∣∣
∣∣∣∣∣ 1√

n

k∑
t=1

(W ′
t,n − V ′

t,n)

∣∣∣∣∣
∣∣∣∣∣
2

2

 1
2

≤ KΘn

√
log(n)

(
dn
n

)χ(q,β)

for some universal constant K depending only on q, c, and β.
If β > 2, then the local long-run covariance matrix ΣP,t,n =

∑∞
h=−∞ CovP (Gt,n(H0), Gt,n(Hh)) is

well-defined for each t ∈ [n], P ∈ Pn by Lemma B.5. If Assumption B.2 is also satisfied for Pn, then on
(Ω′,B′,P′

P )P∈Pn
there exist random vectors (W ′

t,n)t∈[n] which have the same distribution as (Wt,n)t∈[n]

for each P ∈ Pn, and independent Gaussian random vectors (V ∗
t,n)t∈[n] where V ∗

t,n ∼ N (0,ΣP,t,n) for
each t ∈ [n], P ∈ Pn, such that

sup
P∈Pn

EP max
k≤n

∣∣∣∣∣
∣∣∣∣∣ 1√

n

k∑
t=1

(W ′
t,n − V ∗

t,n)

∣∣∣∣∣
∣∣∣∣∣
2

2

 1
2

≤ KΘnΓ
1
2

β−2
β−1

n

√
log(n)

(
dn
n

)ξ(q,β)

for some universal constant K depending only on q, c, and β.

Proof of Lemma B.1: Assumptions B.1 and B.2 are distribution-uniform versions of conditions
(G.1) and (G.2) from Mies and Steland [MS23]. Hence, under the assumptions of the Lemma related
to Assumptions B.1 and B.2, the distribution-pointwise inequalities from Theorem 3.1 in Mies and
Steland [MS23] hold for each P ∈ Pn. Since the suprema over all distributions in the collection Pn

of the upper bounds are finite, the distribution-uniform inequalities from the Lemma hold for Pn by
basic properties of the supremum.

Recently, Bonnerjee et al. [BKW24] introduced univariate strong Gaussian approximation results
with optimal rates and explicit constructions, building on prior work by Karmakar and Wu [KW20].
We emphasize that the distribution-uniform strong Gaussian approximation for high-dimensional non-
stationary nonlinear processes from Lemma B.1 does not achieve this optimal rate. However, the con-
vergence rates for the prediction errors from the estimation of the time-varying regression functions
dominate the strong Gaussian approximation rates. Therefore, we do not “lose anything” by using
Lemma B.1 in our regression-based conditional independence test instead of a distribution-uniform
version of the strong Gaussian approximation from Bonnerjee et al. [BKW24], as our main results
would not change in any meaningful way.

The following result is a distribution-uniform version of Theorem 3.2 from Mies and Steland [MS23].
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Lemma B.2. For some sample size n ∈ N and collection of distributions Pn for the stochastic system
(Gt,n(Hs))t∈[n],s∈Z, let the Rdn-valued process (Wt,n)t∈[n] be defined on the collection of probability
spaces (Ω,B,PP )P∈Pn

so that Wt,n = Gt,n(Ht) with Wt,n ∈ Lq(P ) and θP,t,n(j, q, r) as in Defini-
tion B.1 for each P ∈ Pn and some 2 ≤ r ≤ q < ∞. There exists a universal constant K = K(q, r)
such that

sup
P∈Pn

(
EP max

k≤n

∣∣∣∣∣
∣∣∣∣∣

k∑
t=1

(Wt,n − EP (Wt,n))

∣∣∣∣∣
∣∣∣∣∣
q

r

) 1
q

≤ sup
P∈Pn

K n
1
2−

1
q

∞∑
j=1

(
n∑

t=1

θqP,t,n(j, q, r)

) 1
q


≤ sup

P∈Pn

K n
1
2

∞∑
j=1

max
t≤n

θP,t,n(j, q, r)

 .

In the special case r = 2, the inequality may be improved to

sup
P∈Pn

(
EP max

k≤n

∣∣∣∣∣
∣∣∣∣∣

k∑
t=1

(Wt,n − EP (Wt,n))

∣∣∣∣∣
∣∣∣∣∣
q

2

) 1
q

≤ sup
P∈Pn

K

∞∑
j=1

(j ∧ n)
1
2−

1
q

(
n∑

t=1

θqP,t,n(j, q, 2)

) 1
q

+K

n∑
j=1

(
n∑

t=1

θ2P,t,n(j, 2, 2)

) 1
2

 .

Proof of Lemma B.2: Under the assumptions of the Lemma, the distribution-pointwise inequalities
from Theorem 3.2 in Mies and Steland [MS23] hold for each P ∈ Pn. Since the suprema over all
distributions in the collection Pn of the upper bounds are always finite, the distribution-uniform
inequalities from the Lemma hold for Pn by basic properties of the supremum.

B.2 Distribution-uniform feasible Gaussian approximation

We introduce distribution-uniform versions of Theorem 4.1 and Proposition 4.2 from Mies and Steland
[MS23] so that the distribution-uniform strong Gaussian approximation from Section B.1 can be used
for statistical inference. The key is a distribution-uniform cumulative covariance estimator Q̂k,n of the

cumulative covariance matricesQP,k,n =
∑k

t=1 ΣP,t,n where ΣP,t,n =
∑∞

h=−∞ CovP (Gt,n(H0), Gt,n(Hh))
and Wt,n = Gt,n(Ht). We will prove these guarantees for the same estimator from Mies and Steland
[MS23], namely

Q̂k,n =

k∑
r=Ln

1

Ln

(
r∑

s=r−Ln+1

Ws,n

)⊗2

for some window size Ln ≍ nζ for some ζ ∈ (0, 1
2 ).

The following result is a distribution-uniform version of Theorem 4.1 from Mies and Steland [MS23].

Lemma B.3. For some sample size n ∈ N and collection of distributions Pn for the stochastic system
(Gt,n(Hs))t∈[n],s∈Z, let the Rdn-valued process (Wt,n)t∈[n] be defined on the collection of probability
spaces (Ω,B,PP )P∈Pn

so that Wt,n = Gt,n(Ht) and Assumptions B.1 and B.2 are satisfied for Pn with
q ≥ 4 and β > 2. Then

sup
P∈Pn

(
EP max

k=Ln,...,n

∣∣∣∣∣
∣∣∣∣∣Q̂k,n −

k∑
t=1

ΣP,t,n

∣∣∣∣∣
∣∣∣∣∣
tr

)
≤ KΘ2

n

(
Γn

√
Ln +

√
ndnLn + nL−1

n + nL2−β
n

)
for some universal constant K depending only on β and q.

Proof of Lemma B.3: Assumptions B.1 and B.2 are distribution-uniform versions of conditions
(G.1) and (G.2) from Mies and Steland [MS23]. Hence, under the assumptions of the Lemma related
to Assumptions B.1 and B.2, the distribution-pointwise inequalities from Theorem 4.1 in Mies and
Steland [MS23] hold for each P ∈ Pn. Since the supremum over all distributions in the collection Pn

of the upper bound is always finite, the distribution-uniform inequality from the Lemma holds for Pn

by basic properties of the supremum.
The next result is a distribution-uniform version of Proposition 4.2 from Mies and Steland [MS23].
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Lemma B.4. For some sample size n ∈ N, let Pn be a collection of distributions for the stochastic
system (Gt,n(Hs))t∈[n],s∈Z. Let ΣP,t,n,Σ

′
P,t,n ∈ Rdn×dn be symmetric, positive definite matrices for

each t ∈ [n], P ∈ Pn, and let (Vt,n)t∈[n] be independent random vectors defined on the collection of
probability spaces (Ω,B,PP )P∈Pn

so that Vt,n ∼ N (0,ΣP,t,n) for each t ∈ [n], P ∈ Pn. Then, on a
potentially enriched collection of probability spaces (Ω′,B′,P′

P )P∈Pn
, there exist independent random

vectors (V ′
t,n)t∈[n] with V ′

t,n ∼ N (0,Σ′
P,t,n) for each t ∈ [n], P ∈ Pn such that

sup
P∈Pn

EP max
k≤n

∣∣∣∣∣
∣∣∣∣∣

k∑
t=1

Vt,n −
k∑

t=1

V ′
t,n

∣∣∣∣∣
∣∣∣∣∣
2

2

 ≤ sup
P∈Pn

(
K log(n) [

√
nδP,nρP,n + ρP,n]

)
,

where

δP,n = max
k≤n

∣∣∣∣∣
∣∣∣∣∣

k∑
t=1

ΣP,t,n −
k∑

t=1

Σ′
P,t,n

∣∣∣∣∣
∣∣∣∣∣
tr

,

ρP,n = max
t≤n

||ΣP,t,n||tr.

Proof of Lemma B.4: The distribution-pointwise inequalities from Proposition 4.2 in Mies and
Steland [MS23] hold for each P ∈ Pn. Since the supremum over all distributions in the collection Pn

of the upper bound is always finite, the distribution-uniform inequality from the Lemma holds for Pn

by basic properties of the supremum.

B.3 Auxiliary Lemmas

The following result is a distribution-uniform version of Proposition 5.4 from Mies and Steland [MS23].

Lemma B.5. For some sample size n ∈ N and collection of distributions Pn for the stochastic system
(Gt,n(Hs))t∈[n],s∈Z, let Assumption B.1 be satisfied for Pn with some q ≥ 2, β > 0, and constant
Θn > 0. Denote

γP,t,n(h) = CovP [Gt,n(H0), Gt,n(Hh)] ∈ Rdn×dn .

Then for all t ∈ [n], h ∈ Z, we have

sup
P∈Pn

||γP,t,n(h)||tr ≤ Θ2
n

∞∑
j=h

j−β ,

where || · ||tr denotes the trace norm. Hence, if β > 2, then the long-run covariance matrix

γP,t,n =

∞∑
h=−∞

γP,t,n(h),

is well-defined for all t ∈ [n], P ∈ Pn.

Proof of Lemma B.5: The distribution-pointwise inequality from Proposition 5.4 in Mies and Ste-
land [MS23] holds for each P ∈ Pn. Since the supremum over all distributions in the collection Pn of
the upper bound is always finite, the distribution-uniform inequality from the Lemma holds for Pn by
basic properties of the supremum.

The following result is a distribution-uniform version of the Rosenthal inequality from the first part
of Theorem 5.6 from Mies and Steland [MS23].

Lemma B.6. For some sample size n ∈ N and collection of distributions Pn, let (Mt,n)t∈[n] be a

Rdn-valued martingale-difference sequence with distribution determined by P ∈ Pn. For each 2 ≤ r ≤
q < ∞, there exists a finite factor Cq,r such that for any n, dn ∈ N, we have

sup
P∈Pn

(
EP max

k≤n

∣∣∣∣∣
∣∣∣∣∣

k∑
t=1

Mt,n

∣∣∣∣∣
∣∣∣∣∣
q

r

) 1
q

≤ Cq,rn
1
2−

1
q sup
P∈Pn

(
n∑

t=1

EP ||Mt,n||qr

) 1
q

≤ Cq,rn
1
2 sup
P∈Pn

(
max
t≤n

(EP ||Mt,n||qr)
1
q

)
.
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Proof of Lemma B.6: The distribution-pointwise inequalities from the first part of Theorem 5.6 in
Mies and Steland [MS23] hold for each P ∈ Pn. Since the suprema over all distributions in the collection
Pn of the upper bounds are always finite, the distribution-uniform inequality from the Lemma holds
for Pn by basic properties of the supremum.

The following result is similar to the bounded convergence lemma from Lemma 25 in Shah and
Peters [SP20].

Lemma B.7. For some sample size n ∈ N and collection of distributions Pn, let Xn be a generic real-
valued random variable with distribution determined by P ∈ Pn, where the collection of distributions
Pn can change with n. Let K > 0, and suppose that |Xn| ≤ K for all n ∈ N and Xn = oP(1). Then
we have

sup
P∈Pn

EP (|Xn|) = o(1).

Proof of Lemma B.7: For any given ϵ > 0,

|Xn| = |Xn|1{|Xn|>ϵ} + |Xn|1{|Xn|≤ϵ} ≤ K1{|Xn|>ϵ} + ϵ.

By the assumption that Xn = oP(1), we can find some N ∈ N such that sup
P∈Pn

PP (|Xn| > ϵ) < ϵ/K for

n ≥ N . Hence, for n ≥ N we have

sup
P∈Pn

EP (|Xn|) ≤ K sup
P∈Pn

PP (|Xn| > ϵ) + ϵ < 2ϵ.

Since ϵ > 0 was arbitrary, we obtain the desired result.

C Supplementary Appendix

C.1 Directions for future work

We discuss three promising avenues for future work. First, we plan to develop statistical techniques
for nonstationary nonlinear time series which utilize our conditional independence test as a core com-
ponent. In our companion paper [WHR25], we apply our test to the problem of identifying auxiliary
indicators for forecasting nonstationary time series. It would also be of interest to develop a variable
selection procedure for forecasting and a causal discovery algorithm for nonstationary nonlinear time
series. We note that it may be possible to use the theoretical tools for nonlinear locally stationary
processes and the functional dependence measure to develop a unified causal inference framework for
nonstationary processes by building on prior work [Sag+20; RGR22; Run+23; Run+19b; Run18a].
However, this line of inquiry requires a solution to the problem of post-selection inference [KKK22],
as there does not yet exist a general solution analogous to sample splitting for the iid setting.

Second, we plan to explore topics related to time-varying regression estimation. It would be of
interest to theoretically investigate the sieve estimator from Section 4 in the high-dimensional setting
by introducing a sparsity-inducing penalty for regularization as in Zhang and Simon [ZS23]. It would
also be of interest to develop a computationally efficient online estimation procedure for the sieve
estimator by taking inspiration from Zhang and Simon [ZS22]. Along the way, we plan to theoretically
investigate our subsampling cross-validation procedure from Section 5.1 for selecting the parameters of
global estimators of time-varying regression functions. Additionally, it would be of interest to develop
guarantees for time-varying nonlinear regression estimators in the context of processes with the total
variation-type nonstationarity condition from Assumption 3.6. It may also be possible to investigate
the convergence rates for deep neural network regression estimators as in Kurisu et al. [KFK25], but
in the context of nonstationary processes with the functional dependence measure.

Third, there are several possible future research directions for conditional independence testing in
this setting. While our test is based on the expected conditional covariance functional, our framework
can easily be adapted to use any other functional equal to zero under the null of conditional indepen-
dence. In particular, using higher-order functionals may be of interest in more complicated settings
because the expected conditional covariance functional lacks sensitivity to nonlinear relationships and
interactions; see Zhang and Janson [ZJ20] for more discussion. Specifically, it would be valuable to
develop such tests without compromising on practicality, which is one of the key advantages of our
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regression-based approach. In Section C.7, we discuss various conditional independence tests designed
specifically for the locally stationary setting. However, those test statistics utilize kernel smoothing,
so the resulting tests can be very sensitive to the choice of the bandwidth parameters.

C.2 Granger causality

Recently, Shojaie and Fox [SF22] have written a comprehensive review to help clarify matters. We
provide a highly condensed summary of Sections 2 and 4 in their review. The original definition of
Granger causality from Granger [Gra69] is about prediction. Informally, a process X is said to be
Granger noncausal of another process Y if, for all times t, the variance of the error from the optimal
prediction of Yt based on all relevant information up to time t − 1 is not reduced by including the
history of X up to time t − 1. See Section 2 in Shojaie and Fox [SF22] for the exact definition and
the stringent conditions under which this predictive definition corresponds to genuine causality as in
Pearl [Pea09]. While this original definition does not assume linear dynamics, much of the following
methodology revolves around the identification of coefficients in linear vector autoregressive (VAR)
models with p time series [Gra80; Lüt05; BSM15].

Another definition of Granger causality, referred to as strong Granger causality [FM82], is stated in
terms of conditional independence relationships among stochastic processes. Let (Xi)i∈[p] be p signals
used to predict the target Y . The process Xi is said to be (strongly) Granger noncausal of Y if, for
all times t, Yt is conditionally independent of the history of the signal Xi up to time t − 1 given the
history of the other signals (Xj)j∈[p]\{i} up to time t− 1. See Definition 2 in Shojaie and Fox [SF22]
for the exact definition, and the rest of Section 4 therein for more discussion.

Notably, Eichler [Eic12] introduced a comprehensive graphical modeling framework for time series
based on strong Granger causality, which can be detected using conditional independence tests for
nonlinear time series [SP11; SW07; BRT12; SW21; ZZZ22]. In a similar vein, our proposed conditional
independence test can be used to detect strong Granger causality for nonlinear time series with time-
varying dynamics. This can be incorporated into graphical modeling frameworks for nonstationary
nonlinear time series, analogous to Basu and Rao [BR23].

There are various techniques for assessing nonlinear Granger causality that do not use conditional
independence testing. For instance, the neural Granger causality method from Tank et al. [Tan+21]
extracts Granger causal structures by using sparsity-inducing penalties on the weights of structured
multilayer perceptrons (MLPs) and recurrent neural networks (RNNs). Additionally, there is an in-
fluential strand of literature connecting Granger causality and directed information theory [AM12;
QKC15]. See Section 4 of Shojaie and Fox [SF22] for more discussion of nonlinear Granger causality.

C.3 Alternative test statistics

Consider the test statistic

S⋆
n,p(R̂n) =

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t∈Tn,L

R̂t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
p

,

based on the ℓp-norm (p ≥ 2) of the full sum of residual products. For example, we can use the test
statistics

S⋆
n,∞(R̂n) =
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Tn,L

∑
t∈Tn,L
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∣∣∣∣∣∣
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, S⋆
n,2(R̂n) =

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn,L

∑
t∈Tn,L

R̂t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
2

.

Crucially, the full sum test statistic S⋆
n,p(R̂n) will not have power against alternatives in which the

time-averages of the time-varying expected conditional covariances are close to zero (e.g. positive
during the first half of times, and negative during the second half). On the other hand, the maximum
partial sum test statistic Sn,p(R̂n) from (10) does have power against these alternatives. If the time-
varying expected conditional covariances are suspected to consistently maintain the same sign (whether
positive or negative), then users might be able to gain some power by using S⋆

n,p(R̂n), although we

emphasize that Sn,p(R̂n) will also have power against these alternatives. However, in settings where
we have little prior knowledge about the time-varying expected conditional covariances between the
nonstationary processes under alternatives, then the maximum partial sum test statistic Sn,p(R̂n)
should be used because it has power against a wider range of alternatives. For similar reasons, we
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recommend using Sn,p(R̂n) when conducting automated multiple conditional independence testing
(e.g. for screening out irrelevant time series in a large database of possible forecasting signals).

It is perhaps most intuitive to frame the problem in the following way. Consider the time-varying
partially linear model

EP (Yt,n,j,b|Xt,n,i,a,Zt,n) = βP,t,n,mXt,n,i,a + hP,t,n,j,b(Zt,n),

for some function hP,t,n,j,b(·). When the time-varying conditional expectation EP (Yt,n,j,b|Xt,n,i,a,Zt,n)
is assumed to have this time-varying partially linear form, the time-varying coefficient βP,t,n,m is
equal to the expected conditional covariance of Xt,n,i,a and Yt,n,j,b given Zt,n divided by the expected
conditional variance ofXt,n,i,a given Zt,n; see Robins et al. [Rob+09] and Hines et al. [Hin+22] for more
discussion. If domain knowledge suggests that the time-varying coefficients (βP,t,n,m)m=(i,j,a,b)∈Dn

consistently maintain the same sign over time t ∈ Tn, then the full sum test statistic S⋆
n,p(R̂n) can

be used to gain some power. Otherwise, if we cannot make this assumption, then use the maximum
partial sum test statistic Sn,p(R̂n) because it has power against a broader range of alternatives.

C.4 Cyclostationary processes

The general triangular array framework from Section 3 also allows for nonstationary processes that
exhibit some form of repetition over time, such as periodic stationarity or cyclostationarity [Ben58;
PP79; BHL94; Gar94; GNP06; Nap16b]. We emphasize that these types of nonstationary processes
are not necessarily locally stationary. The theoretical justification of the dGCM test from Theorem 3.1
requires that we improve our estimates of the time-varying regression functions as n grows. See Remark
2.1 in Chen et al. [CSW22] and the preceding discussion about time-varying regression with periodic
stationary or cyclostationary processes. Also, see Section 2.5.1 of Bonnerjee et al. [BKW24] for a
discussion of how strong Gaussian approximations for nonstationary nonlinear processes with causal
representations as in Sections 3.1, 3.3, 3.4 can be used with cyclostationary processes. Ideally, we
would like to be able to handle even more complex forms of nonstationarity than cyclostationarity.
See Gardner et al. [GNP06] and Napolitano [Nap16a] for generalizations of this concept.

C.5 Simulation-and-regression for nonstationary processes

The general triangular array framework from Section 3 can also be used with simulation-and-regression
approaches for estimating the time-varying regression functions. Suppose we have access to a black-
box simulator which can be used to generate realistic paths of (X,Z). Naturally, this simulation-based
approach assumes that we either know the parameters of the simulator, or how to estimate them using
an appropriate technique [CBL20; McF89; GMR93; FK21]. The main idea of this approach is to
simulate s paths of (X,Z), then fit separate regression models, such as XGBoost [CG16], LightGBM
[Ke+17], or random forests [Bre01], for each time t by using the observations across the s iid simulated
paths. To obtain the residuals for the time-varying regression of X on Z, the fitted regression models
for each time t can be used with the observed realization of (X,Z). The residuals for the time-varying
regression of Y on Z can be obtained as in Section 4 or Section C.4.

The asymptotic arguments can be based on letting the number of simulations s grow with n, where
n can be linked to the sample size (e.g. sampling frequency and/or duration of time) and number of
dimensions. We can also allow n to be linked to the quality of the simulations, so that as n grows
we can generate more realistic simulations — perhaps at a higher computational cost — and the
simulator can be seen as converging in some sense to the true data generating process. Note that if the
simulator can generate paths for (X,Y, Z), then conditional independence tests which require multiple
realizations of a nonstationary process, such as [Man+24; LSP22; Liu+23], can be used. In contrast,
our proposed approach only requires a simulator for (X,Z) and a single realization of Y .

The main advantage of this simulation-based approach is that it leverages domain knowledge about
(X,Z) to obtain better estimates of the time-varying regression functions without assuming anything
about Y . For example, stochastic simulators can be used to generate paths of climatic variables, such
as precipitation, surface temperature, surface water vapor, and ozone. Using the approach described
above, we can identify conditional dependencies between these simulatable climatic variables (X,Z)
and another process Y that is harder to model (e.g. commodity prices, consumer behavior, flu cases).

In this setting, it may also be possible to develop a conditional independence test based on
simulation-based conditional density estimation using a model-X approach [Can+18; Liu+22; Niu+24;
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BCS20; HJ20; BJ22; SMR23; GHL24]. Nevertheless, the dGCM test can still be a very practical
choice for this setting, particularly when it is much more feasible to do simulation-and-regression
than simulation-based conditional density estimation. For instance, when the simulator’s computa-
tional demands make it impossible to generate a large number of paths for a high-dimensional process
(X,Z).

C.6 Simplifications under stationarity

Throughout this paper, we have completely avoided the assumption of stationarity. However, it is
worth explaining how things would simplify if we are willing to assume that the processes are stationary.
Overall, the takeaway is that the original GCM test from Shah and Peters [SP20] would require minimal
modifications.

To begin, suppose we have n ∈ N observations of a stationary mixing time series, so that the
regression functions are time-invariant. Further, suppose that the errors are iid. The statistical guar-
antees of many machine learning algorithms and statistical models, such as support vector machines
[SA09; SHS09; HS14], random forests [Goe20; DN20], lasso [WLT20], and high-dimensional vector
autoregressive models [WT23], have been studied in the context of stationary mixing time series with
iid errors. Over the last decade, the literature on statistical learning theory for time series has been
able to move beyond the restrictive assumptions of stationarity and mixing [Yu94; WLT20; KV02;
ALW13] (or asymptotic stationarity [AD12]) by describing nonstationarity in terms of discrepancy
measures [KM14; KM15; KM17; HY19; MK20]. This literature has recently considered new notions of
learnability for general non-iid stochastic processes [DT22] and conditions under which learning from
general non-iid stochastic processes is possible [Han21].

Zhang and Wu [ZW15] considered the setting in which the regression functions are time-varying
and the errors are iid. Since the errors are iid, a multiplier bootstrap testing procedure can be justified
by the Gaussian approximation from Chernozhukov et al. [CCK13] which was used by Shah and Peters
[SP20]. Hence, the resulting test would be very similar to the original GCM test for the iid setting from
Shah and Peters [SP20]. The main difference is that there can be time-lagged conditional dependencies
in the stationary time series setting.

Suppose that the observed processes are temporally dependent (e.g. some form of mixing) and sta-
tionary so that the regression functions are time-invariant as before, but the errors are also temporally
dependent. The guarantees of the lasso and vector autoregressive models are fairly well-studied in
this setting. Basu and Michailidis [BM15] investigated high-dimensional vector autoregressive models
with serially correlated errors. Gupta [Gup12] and Xie and Xiao [XX18] studied the lasso with errors
satisfying various weak dependence conditions. Peng et al. [PZZ23] and Xie et al. [XXY17] studied the
lasso with ϕ-mixing and β-mixing errors, respectively. Wu and Wu [WW16] studied the guarantees of
the lasso in the setting with temporally dependent errors by using the functional dependence measure
of Wu [Wu05].

In the serially correlated error setting, the key difference with the GCM test from Shah and Peters
[SP20] is that one must use a suitable Gaussian approximation result to justify a multiplier bootstrap-
type testing procedure. See Chang et al. [CCW24] for a comprehensive overview of Gaussian approx-
imations for dependent data. Chernozhukov et al. [CCK19] investigated a block multiplier bootstrap
under a β-mixing assumption, and Zhang and Cheng [ZC14] explored a wild multiplier bootstrap under
the functional dependence measure of Wu [Wu05]. Also, Zhang and Wu [ZW17] discuss estimators
for the long-run covariance matrix so that their Gaussian approximation for high-dimensional time
series can be applied in practice. See Wu and Xiao [WX12] and Wu [Wu11] for more discussion about
long-run covariance matrix estimation for stationary time series.

One could also have time-invariant regression functions with errors that are nonstationary and
temporally dependent. For instance, Xia et al. [XCG24] studies the lasso with locally stationary
errors. However, the statistical guarantees of other machine learning algorithms and statistical models
have not been studied in this setting. If the process of error products is mean-nonstationary (i.e.
time-varying expected conditional covariance) under alternatives, then the same test statistics from
Section 2.4 can be used. Otherwise, if domain knowledge suggests that the time-varying expected
conditional covariances usually maintain the same sign, then the test statistics from Section C.3 can
be used.

To recap, we considered how the assumption of stationarity would vastly simplify the problem. We
find that the original GCM test for the iid setting from Shah and Peters [SP20] can be adapted to the
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stationary time series setting by making the previously mentioned changes. In contrast, we consider the
much more complicated setting in which the observed processes can be nonstationary and temporally
dependent, the regression functions can vary over time, and the error processes can be nonstationary
and temporally dependent. We emphasize that our dGCM test can be used with stationary processes
and iid sequences, which are special cases of the general framework from Section 3.

C.7 Additional tests for locally stationary processes

We discuss three conditional independence tests for locally stationary processes that we did not pursue
in this paper. Crucially, the test statistics below require local long-run covariance estimation. Most
local long-run covariance estimators use kernel smoothing, and therefore require selecting bandwidths.
Unfortunately, test statistics that use kernel smoothing can be very sensitive to the choice of the band-
widths, which can be hard to select in practice. Inspired by the success of bandwidth-free approaches
in other areas of time series analysis [Lob01; Sha10; RS13; Sha15; ZS24], we designed the dGCM test
so that it does not require local long-run covariance estimation and therefore avoids kernel smoothing.

Recall the notation for the locally stationary setting from Section 4. To begin, let us translate
the “weak” conditional independence criterion of Daudin [Dau80] into the locally stationary setting as
follows. For some n ∈ N, u ∈ Un, (i, j, a, b) ∈ Dn, t ∈ Tn, if

X̃⌊un⌋,n,i,a(u)⊥⊥ Ỹ⌊un⌋,n,j,b(u) | Z̃⌊un⌋,n(u),

then
EP [ϕ(X̃⌊un⌋,n,i,a(u), Z̃⌊un⌋,n(u))φ(Ỹ⌊un⌋,n,j,b(u), Z̃⌊un⌋,n(u))] = 0,

for all functions
ϕ ∈ L2

X̃⌊un⌋,n,i,a(u),Z̃⌊un⌋,n(u)
, φ ∈ L2

Ỹ⌊un⌋,n,j,b(u),Z̃⌊un⌋,n(u)
,

such that

EP [ϕ(X̃⌊un⌋,n,i,a(u), Z̃⌊un⌋,n(u)) | Z̃⌊un⌋,n(u)] = 0,

EP [φ(Ỹ⌊un⌋,n,j,b(u), Z̃⌊un⌋,n(u)) | Z̃⌊un⌋,n(u)] = 0.

Hence, the corresponding local expected conditional covariance

ρP,n,m(u) = EP [CovP (X̃⌊un⌋,n,i,a(u), Ỹ⌊un⌋,n,j,b(u)|Z̃⌊un⌋,n(u))],

is equal to zero for m = (i, j, a, b) ∈ Dn.
First, consider the global null hypothesis of conditional independence

X̃⌊un⌋,n,i,a(u)⊥⊥ Ỹ⌊un⌋,n,j,b(u) | Z̃⌊un⌋,n(u) for all u ∈ Un, for all (i, j, a, b) ∈ Dn. (21)

In the univariate setting, Dn simply consists of one dimension/time-offset tuple as in Section 2.2.
Also, note that this hypothesis can be extended to the group of time series setting as discussed in
Section 2.2. Note that the null hypothesis (21) implies the null hypothesis (14), so the process of error
products from the time-varying nonlinear regressions of (Xt,n,i,a)t∈Tn

on (Zt,n)t∈Tn
and (Yt,n,j,b)t∈Tn

on (Zt,n)t∈Tn
will still have mean zero as in Section 4. To test for the null hypothesis (21), we could,

for example, use the test statistic

sup
u∈Un

∣∣∣∣∣∣
∣∣∣∣∣∣ 1√

Tn

⌊un⌋∑
t=T−

n

(Σ̂
R

t,n)
−1/2R̂t,n

∣∣∣∣∣∣
∣∣∣∣∣∣
p

,

based on some ℓp norm (p ≥ 2) of the studentized partial sum process, where Σ̂
R

t,n is an estimate of
the local long-run covariance matrix at time t. The theoretical guarantees for the test based on this
test statistic would utilize the recent results from Mies [Mie24] about strong Gaussian approximations
with random multipliers.

Second, it is possible to develop a test for the local null hypothesis of conditional independence

X̃⌊un⌋,n,i,a(u)⊥⊥ Ỹ⌊un⌋,n,j,b(u) | Z̃⌊un⌋,n(u) for all (i, j, a, b) ∈ Dn, (22)
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for a particular rescaled time u ∈ Un (i.e. instead of for all Un as in (21)) by using, for example, the
test statistic

max
m=(i,j,a,b)∈Dn

∣∣∣∣∣ 1√
Tnhn,m

∑
t∈Tn

K

(
t/n− u

hn

)
R̂t,n,m

∣∣∣∣∣ /σ̂R
n,m(u),

for some bandwidths hn,m −→ 0 and local long-run variance estimates (σ̂R
n,m(u))2. The main idea for

this local conditional independence test is that since EP (R̃P,⌊un⌋,n,m(u)) = 0 under the null and the
process of error products is “approximately stationary” over short periods of time, we can expect that
the means of RP,t,n,m = R̃P,t,n,m(t/n) for rescaled times t/n near u are also close to zero under the
null. We can make this mathematically precise by using the technical tools developed for nonlinear
locally stationary processes from Dahlhaus et al. [DRW19].

Third, it is also possible to simultaneously test whether conditional independence

X̃⌊un⌋,n,i,a(u)⊥⊥ Ỹ⌊un⌋,n,j,b(u) | Z̃⌊un⌋,n(u) for all (i, j, a, b) ∈ Dn, (23)

holds at each rescaled time u ∈ Un (i.e. instead of for a particular u ∈ Un as in (22)). This can be done
by creating simultaneous confidence bands (i.e. over time) for expected conditional covariance curves
(ρP,n,m(u))u∈Un

for each m = (i, j, a, b) ∈ Dn. Depending on whether or not estimates of the local
long-run variances (σ̂R

n,m(u))2 are used, these simultaneous confidence bands will have time-varying
or time-invariant widths, respectively. The main idea is that the local null hypothesis of conditional
independence at rescaled time u ∈ Un for some dimension/time-offset tuple m = (i, j, a, b) ∈ Dn

can be rejected if zero is not included in the corresponding confidence interval for the local expected
conditional covariance ρP,n,m(u). This can be done using similar arguments as Bai and Wu [BW23],
which focuses on inferring time-varying correlation curves. However, due to the problem of post-
selection inference [KKK22], this would require either stronger assumptions (e.g. Donsker-type), data
decomposition techniques (e.g. splitting, fission, or thinning) for nonstationary time series, or two
independent realizations of the same nonstationary process — rarely possible outside of experimental
settings.

An approach for inferring expected conditional covariance curves would have a range of applications
outside of testing for conditional independence, since this functional frequently appears in the causal
inference literature [Ken24; Rob+08; Rob+09; Li+11; Rob+17; NR18]. We suspect that similar
approaches can be used to infer curves based on other functionals of interest in causal inference.
Hence, this line of work would be of significant interest to the emerging field of time series causal
inference [Sag+20; RGR22; Run+23; Run+19b; Run18a; WNR24]. Lastly, we note that it may be
possible to extend the tests discussed here to the piecewise locally stationary setting, however we leave
the details for future work.

C.8 Piecewise locally stationary processes

We briefly describe how to extend the Sieve-dGCM test from Section 4 from locally stationary processes
[Dah97; ZW09; Dah12; DRW19] to a more general class of nonstationary processes known as piecewise
locally stationary (PLS) processes introduced in Zhou [Zho13]. Specifically, the class of PLS processes
generalizes the stochastic Lipschitz nonstationarity condition from Assumption 4.6 by allowing for
finitely many breakpoints [Zho13; WZ24; DWZ19]. We emphasize that PLS processes are included in
the even more general class of nonstationary processes from Section 3 with the total variation-type
nonstationarity condition from Assumption 3.6.

The main idea is to identify the breakpoints, fit a separate sieve model on each locally stationary
segment, and run Algorithm 1 on all the residuals. If the breakpoints are known exactly, then the same
arguments can be used to show that the sieve time-varying regression estimators achieve the required
convergence rates (i.e. within each locally stationary segment). If the breakpoints must be identified,
then our arguments must be extended to account for this. As far as we know, Wu and Zhou [WZ24] is
the most relevant work on identifying breakpoints for PLS processes. We leave the full details of this
extension for future work.

C.9 Weakening the assumptions on the error processes

In Assumption 3.5, we assume that there are distribution-uniform upper bounds on the L∞ norms
and L∞ functional dependence measures of the error processes. We use this assumption to show
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inequality (19) in the proof of Theorem 3.1. Afterwards, we use the time-uniform convergence rates
for the time-varying regression estimators to show Step 1.2 in the proof of Theorem 3.1. It is possible
to weaken the assumptions imposed on the error processes by making stronger assumptions about the
time-varying regression estimators, or more complicated assumptions about the terms in (19). Instead,
we opt for simpler assumptions on the errors and prediction errors for the sake of transparency.

Lastly, we note that the Sieve-dGCM test from Section 4 performs well even when the error processes
violate Assumption 3.5, at least in the settings we considered for our simulations in Section 5. To satisfy
Assumption 3.5, we can make minor modifications to the data generating processes in Section 5. For
example, by replacing the Gaussian error processes with, say, truncated Gaussian error processes.

C.10 Literature review of distribution-uniform inference

We briefly review prior work on distribution-uniform inference. First, we discuss the conditional
independence testing literature. Recently, there has been a great deal of work on distribution-uniform
conditional independence testing frameworks due to the hardness result and conditional independence
testing framework from Shah and Peters [SP20]. For instance, Lundborg et al. [LSP22] introduced
many distribution-uniform convergence results for separable Banach and Hilbert spaces. Recently,
Christgau et al. [CPH22] introduced a distribution-uniform “conditional local independence” testing
framework for the setting in which n realizations of a point process are observed. Christgau et al.
[CPH22] also introduce a distribution-uniform version of Rebolledo’s martingale central limit theorem
[Reb80] and extend many distribution-uniform convergence results from Lundborg et al. [LSP22] to
metric spaces.

Second, we mention some relevant work from the literature on anytime-valid inference. Recently,
Waudby-Smith and Ramdas [WR23] introduced a distribution-uniform strong (almost-sure) Gaussian
approximation for the full sum of iid random variables. The work in Waudby-Smith and Ramdas
[WR23] is motivated by prior work on asymptotic anytime-valid inference from Waudby-Smith et al.
[Wau+24], in which the authors defined the concept of an “asymptotic confidence sequence”. In
particular, Waudby-Smith et al. [Wau+24] introduced asymptotic confidence sequences for iid random
variables and a Lindeberg-type asymptotic confidence sequence which can capture time-varying means
under martingale dependence.

Third, we discuss other areas in which distribution-uniform inference is studied under different
names. There is a vast literature discussing the importance of distribution-uniform inference under the
name of “honest” or “uniform” inference, see [Li89; Kas18; Tib+18; RWG19; KBW23]. Also, there
is a plethora of literature on distribution-uniform moment inequality testing [IM04; RS08; AG09;
AS10; AB12; RSW14]. Most recently, Li et al. [LLZ22] developed a distribution-uniform test for
general functional inequalities which admits conditional moment inequalities as a special case. In
their supplementary appendix, Li et al. [LLZ22] introduce a distribution-uniform strong Gaussian
approximation for the full sum of a high-dimensional mixingale.
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